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1. GENERAL INTRODUCTION 

Zein is tiie predominant protein found in maize comprising 52% of the whole 

kemel and 60% of the endosperm proteins (Wilson 1987). Zein, a prolamine, is 

soluble in aqueous alcohol and relatively insoluble in water. The protein has been 

used in a variety of food and nonfood applications due to its hydrophobicity and 

functional properties, such as film and fiber fomnation, thennoplasticity and 

adhesiveness. The price of zein, however, is quite high (over $20/kg), and thus, 

impedes its utilization. Currently, about 0.54 million kg (1.2 million lb) of zein per 

year is produced and used primarily as a coating for confections and 

pharmaceuticals (Shukia 1992). In order to increase industrial utilization of zein, 

developing processes that can reduce the cost of zein are essential. 

Zein is isolated from com gluten meal by extracting com gluten meal at 60 °C 

with 88% aqueous isopropyl alcohol containing 0.25% NaOH (Carter and Reck 

1973). The clarified extract is then chilled to -10 to -20 °C causing zein to 

precipitate. The supernatant is decanted and the lower layer is dried using a 

vacuum dryer. The yield of zein extracted using this process is estimated at only 

22% of the gluten when approximately 65% protein is available. A significant 

increase in the yield of zein will be a major factor in reducing the price. 

Furthemnore, as the requirement for com syrups and fuel-grade ethanol increase in 

the United States, the amount of com wet milled will also increase as will com gluten 

meal, a co-product of wet milling. Approximately 1.2 billion bushels of com was 
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processed by wet milling in 1993 and approximately 922 million kg (2,031 million lb) 

of com gluten meal was produced (Andreas 1994). This overabundance of high 

protein feed (over 60% protein in com gluten meal) (Wright 1987) could ultimately 

depress prices and decrease the profits of wet milling processors. By finding new 

markets for zein, more com gluten meal could be used to help offset the potential 

overabundance of this co-product. 

The process of producing zein from com gluten meal, however, has not been 

critically examined in the public domain for many years, and research on the 

influence of corn gluten meal quality on zein extraction has not been published. 

This dissertation examines factors that influence yield and purity of zein extracted 

from com gluten meal. The influences of maize hybrid and drying process on com 

gluten meal quality and zein yield were examined. The investigation was carried out 

using both commercial and pilot-plant-produced com gluten meal. These data will 

add important information to the current knowledge base to find ways to improve the 

yield of zein extracted from com gluten meal and ultimately increase the utilization of 

the protein. 

Dissertation Organization 

This dissertation consists of four papers which will be submitted to the journal 

of Cereal Chemistry. The first paper discusses the factors in commercially produced 

com gluten meal that influence the yield and purity of the extracted zein. The 
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second paper reports on developing a process for the production of a relatively high 

protein content com gluten meal using a pilot-plant-scale wet-milling facility. The 

third paper examines the effect of drying on zein extraction yield and purity, and zein 

composition. The final paper describes the influence of adding phosphate in the 

extraction solvent on the yield and purity of zein extracted from com gluten meal. 

The four papers are preceded by a General Introduction and a Literature Review, 

and followed with General Conclusions. 

Literature Cited 

Andreas, M. L. 1994. Introduction. Page 5 in Com Annual. Com Refiners 

Association, Inc. Washington D.C. 

Carter, R., and Reck, D. R. 1970. Low temperature solvent extraction process for 

producing high quality zein. U. S. Patent: 3,535,305. 

Shukia, T. P. 1992. Trends in zein research and utilization. Cereal Foods Worid 

37:225. 

Wilson, C. M. 1987. Proteins of the kernel. Pages 273-310 in: Com: Chemistry 

and Technology. S. A. Watson, and P. E. Ramstad eds. Second Printing, 1991. 

American Association of Cereal Chemists: St. Paul, MN. 

Wright, K. N. 1987. Nutritional properties and feeding values of com and its by­

products. Pages 447-478 in: Com Chemistry and Technology. S. A. Watson and 
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Chemists: St. Paul, MN. 
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2. LITERATURE REVIEW 

Composition of the Com Kernel 

A com kernel consists of the gemri (the embryo), endosperm (the energy 

supply for the initial growth), hull (the protective coating), and tip cap. 

The endosperm is the major part of the kemel and accounts for 81.9% of the 

total weight (db). It is composed primarily of starch 86.4% (db) and protein 9.4% 

(db), and contains very little oil (0.8%) (Earle et al. 1946). The prolamine zein is the 

predominant protein found in the endosperm accounting for 60% of the proteins. 

Glutelins are the next major class found in the endosperm accounting for 26% of the 

protein followed by albumins and globulins at 6% (Wilson 1987). 

The germ, or embryo, accounts for about 11.9% of the dry weight of the com 

kemel (Earie et al. 1946) and has a proximate composition of 34.5% oil, 18.8% 

protein, 10.1% ash, 10.8% sugar and 8.2 % starch (db). Unlike the endospemi, the 

major class of proteins are albumins and globulins, each at 30% respectively, 

followed by glutelins (23%) and a relatively low level of prolamins (5%) (Lasztity 

1979). 

The hull and tip cap account for 6.1% of the weight of the kemel. The major 

component in the hull and tip cap is fiber, however, they also contain small amounts 

of starch (7.3% and 5.3% for hull and tip cap, respectively), protein (3.7% and 9.1%) 

and oil (1.0% and 3.8%) (Earle et al. 1946). 
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Zein 

Zein Nomenclature 

Zein, the predominant storage protein found in the maize Icemel, was initially 

designated as a prolamine by Osborne based on its solubility in relatively strong 

alcohol or dilute aqueous alkali (Osbome and Mendel 1914). The heterogeneous 

nature of zein was demonstrated by sodium dodecyl sul̂ te (SDS) gel 

electrophoresis and isoelectric focusing (Wilson et al. 1981; Righetti et al. 1977). 

Several nomenclature schemes have been suggested by a number of 

researchers to identify the heterogeneous protein fractions found in zein. Wilson 

(1985) proposed a nomenclature system for zein polypeptides based on the 

apparent molecular weight when analyzed by SDS-PAGE using the following 

designators; reduced soluble protein (MW 27-31 kD), A-zein (MW 21-26 kD), B-zein 

(MW18-24 kD), C-zein (MW 15-18 kD), and D-zein (MW 9-13.5 kD). Esen (1987) 

proposed a nomenclature system for the zeins based on solubility. He defined three 

distinct firactions and gave them each a Greek letter designator: a) a-zein, soluble in 

50-95% (v/v) isopropyl alcohol which accounts for 75-85% of total zein with MW of 

21-25 kD and 10 kD polypeptides; b) p-zein, soluble in 30-85% (v/v) isopropyl 

alcohol containing a reducing agent, includes MW 17-18 kD polypeptides and 

accounts for 10-15% of the total zein (the separation from a-zein is based on 

insolubility in 90% isopropyl alcohol); c) y-zein, soluble in 0-80% isopropyl alcohol 

containing a reducing agent, accounts for 5-10% of the total zein and is made up of 
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MW 27 kD polypeptides (the separation from a- and p-zeins is based on solubility in 

30% isopropyl alcohol with 30 mM sodium acetate, pH 6.0). 

More recently, zein was divided into four classes based on differences in 

solubility, amino acid composition, electrophoretic and chromatographic 

characteristics, and immunological properties (Shewry and Tatham 1990; Wilson 

1991). a-Zeins, corresponding to A and B zeins or Z19 and Z22, constitute 71-85% 

of the total zeins. and have a true MW of 24 and 27 kD based on cDNA sequences. 

p-Zeins, corresponding to C-zein or Z15, have a true MW of 17 kD, and account for 

1-5% of the total zeins. y-Zeins, reduced soluble proteins or Z27, have an true MW 

of 22 kD. The 18 kD polypeptides (Z16) which were in the p-zein class, now belong 

to the Y-zein class because the immunological characteristics is more similar to the 

y-zeins (Esen 1987). y-Zeins, including 18 kD polypeptides, account for 5-15% of 

the total zeins. 5-Zeins, con-esponding to D-zein or Z10, account for the 1-5% of the 

total zeins and have a true MW 14 kD. 

Amino Acid Compositions of Zeins 

All of the zeins are devoid of lysine and tryptophan, and have relatively high 

amounts of proline and glutamine/glutamic acid. a-Zeins (both Z19 and Z22) have 

similar amino acid compositions. Glutamine (20%), leucine (19%), alanine (14%), 

proline (10%) and serine (7%) are the most prevalent amino acids in a-zeins (Wilson 

1987). The majority of the glutamic residues (90%) are present as glutamine 
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(Righetti et al. 1977). a-Zeins also have very few sulfur-containing amino acids; 

cysteine and methionine account for only 1-2% of the amino acids (Shewry and 

Tatham 1990). p-Zeins, however, have a relatively high level of the sulfur-

containing amino acids methionine and cysteine, 11% and 4%, respectively (Wilson 

1987), as well as relatively high levels of tyrosine (8%) and glycine (9%). In addition 

to lysine and tryptophan, p-zeins are also deficient in phenylalanine and histidine, 

therefore, their pi values are in the acidic pH region (pH 3) (Righetti et al. 1977). 

The amino acid composition of y-zeins is characterized by a very high proline (25%) 

and histidine (7%) contents resulting in y-zeins having the most basic pi. y-Zeins 

also contain relatively high levels of cysteine (6%), glycine (7%) and valine (7%). 5-

Zeins also have a very high proportion of the sulfur-containing amino acids, 

methionine (22%) and cysteine (4%) (Shewry and Tatham 1990). 5-Zeins are 

deficient in arginine and, therefore, like p-zeins, have pi values in the acidic pH 

region (Righetti et al. 1977). 

a-Zein Structure 

The stnjcture of a-zein has been studied for many years. Analysis by 

isoelectric focusing/SDS-PAGE indicates that a-zeins are a heterogeneous mixture 

of up to 15 proteins (Wall et al. 1984; Wilson 1985; and Wilson 1986). The 

complete primary structure of a-zein polypeptides deduced from cloned cDNA and 

genomic DNA shows that they are multigene family of 80-100 genes. Sequence 
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comparisons among polypeptides within a-zeins indicate homologies varying from 

60-97% (Esen 1987). Z19 and Z22 consist of about 210 and 245 amino acid 

residues respectively. The sequences shovir unique N- and C-temiinal domains of 

about 36-37 and 10 residues, respectively, separated by a repetitive domain 

consisting of blocks with an average length of 20 residues. The repeats are 

degenerate and rich in leucine and alanine. The size difference between Z19 and 

Z22 results from the insertion of an additional repeat unit in the C-tenninal end of 

the protein. This insertion results in a total of 10 repeats in Z22, compared with 9 in 

Z19 (Shewry and Tatham 1990). 

Electron micrographs of zeins indicate that a-zeins are rod-shaped molecules 

(Argos et al. 1982). The secondary structure, determined by optical rotatory 

dispersion and circular dichroism, has an a-helical content of approximately 50%, 

and the percentage of p-sheet structure is very low when a-zeins are dissolved in 

aqueous ethanol. Based on the apparent size, amino acid composition, a-zein 

sequences (deduced from cDNAs), and secondary structure determination, Argos 

and co-workers (1982) predicted a roughly cylindrical model for a-zeins. The model 

assumed that nine repeat peptides were folded back on one another in an 

antiparallel fashion forming a ring. Furthermore, two or three polar groups on 

helices can fomn hydrogen bonds with adjacent helices or other zein molecules. 

Very little experimental evidence, however, supports the Argos' model, 

except that zeins in solution as asymmetric particles approximate prolate ellipsoids 
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or rods, with high axial rations. Tatham and his co-workers (1993) predicted the 

structure of a-zein based on the results of small angle x-ray scattering and 

viscometric analyses. They found that a-helical predictions were the strongest, 

occuning within repeat motife in both Z19 and 222 zeins. The strongest (3-sheet 

predictions were located in the N-terminal region and p-reverse tums occurred 

predominantly in the C-terminal half. Within the Z19 zeins, two p-tums were 

predicted per repeat near the termini of repeats 6,7,8, and 9, whereas, within the 

Z22 zeins, two p-tums per repeat were for repeats 6, 8, 9, and 10. Therefore, the 

first prediction they gave was that the a-helix may be folded back on itself, either 

parallel or in half, fonning a two-helix bundle. The second prediction is that the a-

helix may be basically linear but distorted in some manner so as to make the 

apparent length of the molecule shorter. Since the structure is not very flexible, 

some parts of the zein molecules in this region may be reverse tums. 

P-, Y-, and S-Zein Structures 

The primary polypeptide sequences of p-, y- and 6-zeins show no sequence 

homology with the a-zein polypeptides (Shewry and Tatham 1990). 

p-Zeins, encoded by two cDNAs and one gene, consist of 160 residues. The 

methionine residues are clustered, and 7 of 18 methionine residues occur between 

position 121 to 132 of the polypeptide, and another 7 of 18 methionine residues 
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occur between position 59 to 89 of the polypeptide. p-Zeins do not contain any 

repeated peptides, and no sequence similarity to the a-zeins. The secondary 

structure shows that p-zeins have little a-heiical structure (33%), and relatively more 

p-sheet (55%), p-tum and random coil structure (Pedersen et al. 1986). No 

prediction of the complete structure has been hypothesized. 

There are two types of y-zeins, Z27 and Z16. y-Zeins (Z27) contain 204 

amino acid residues. Unique N- and C-terminal regions of 11 and 156 residues, 

respectively, flank a repetitive domain consisting of conserved hexapeptides with the 

sequence Pro-Pro-Pro-Val-His-Leu (Prat et al. 1985). The high hydrophilic nature of 

this domain may be responsible for its water solubility in the presence of reducing 

agents, and also for a rod-like conformation. At the C-terminal end, proline occurs 

at every second position between residues 70 to 91, and a cysteine rich region 

exists between residues 92 and 148. Another type of y-zeins (Z16) has 164 

residues. The repetitive domain consists of only two complete hexapeptides and 

two truncated hexapeptides of 3 and 5 residues. About 19-23% of a-helical and 11-

34% of p-sheet structure are present in y-zein polypeptides (Wu et al. 1983). 

6-Zeins consists of 129 residues with a central region containing 17 of 29 

methionine residues, most as Met-Met doubles separated by 2-3 other residues. It 

does not contain any repeated sequence, and its conformation has not been studied 

(Shewry and Tatham 1990). 
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Zein Properties 

Zein is devoid of the essential amino acids lysine and tryptophan, and is also 

low in threonine, valine and the sulfur-containing amino acids; but rich in proline, 

glutamine and asparagine. Due to the absence or relatively low levels of these 

essential amino acids, zein is not well balanced nutritionally for human and 

monogastric animal utilization. 

The solubility of zein in water is very low; only 0.054 g/l water (Wahl 1934). 

Since it has a relatively low level of diamino acids and an abundance of dicarboxylic 

acids, zein is slightly acidic. The protein can be dissolved in a dilute aqueous alkali 

solution within a pH range of 11.3-12.7 or in a strong acidic solution (12 N HCI) 

(Ofelt and Evans 1949). Zein is also soluble in many organic solvents containing 

hydroxyl, carboxyl, and amino moieties in the proper ratio of polar and non-polar 

groups (Evans and Menley 1941; Menley and Evans 1943). Aqueous ethyl and 

isopropyl alcohol are the most common solvents for zein. Other organic solvents 

that have been used to solubilize zein include fomnic, acetic, and lactic acids, 

ethylene glycol, and pyridine. Zeins are also soluble in aqueous 6 M urea, however, 

a-zeins turn cloudy and precipitate when the concentration is lower than 5 M. p-

Zeins, however, can remain in solution in aqueous urea of concentrations as low as 

1 M, but eventually turn cloudy. y-Zeins are soluble in urea, as well as in aqueous 

solutions without urea (Esen 1987). 
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Zeins are observed in isoelectric focusing (lEF) with 15 bands having pi's in 

the pH range 6-9, however, most of the bands are in the pH range 7-8. The p- and 

5-zeins have pi's at an acidic pH of approximately 3 (Righetti et al. 1977), while the 

pi's of y-zeins are in the basic pH range (pH 8-9) (Wilson et al. 1981). 

Zeins are not glycoproteins because zein bands from lEF do not stain with 

periodic acid-fusion reagent (Righetti et al. 1977). Zeins exhibit only one lipoprotein 

component when the lEF bands are stained with Sudan black. This component is at 

pi 3, with MW 13.5 and 9.6 kD (p-zeins and §-zeins), representing 3-5% of the total 

protein. This lipoprotein contains a carotenoid covalently bound to the polypeptide 

backbone and was found to be a component of the membrane that envelops the 

zein protein bodies in the polypeptide chain, since it is not released by alcohol, 

Triton X-100, or urea treatment. 

Although zeins may be deamidated in alcohol solutions in the presence of a 

mineral acid at reflux temperatures (Pomes 1971), zeins are very resistant to 

deamidation in solutions with both acidic and alkaline pH (3.0, 8.7, and 11) at 50 °C 

for rather prolonged periods (8 and 22 hr) (Righetti et al. 1977). 

Zein is very stable to heat in the dry fomn. It can be heated for several hours 

at 100 °C without any noticeable change in properties and does not decompose at 

temperatures as high as 200 °C (Swallen 1941). However, zein has the potential to 

become denatured (insoluble or gelling) in aqueous alcohol. An alcohol 

concentration of 90% (v/v) or higher is required to stabilize a zein solution at 22 °C; 
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below this concentration, the stability decreased rapidly. Under these conditions, 

the gelation tinne can decrease from 90 days in 90% ethanol to 10 days in 80% 

ethanol (Dimitroglou and Breene 1994). The gelation time also decreases as 

temperature increases, from more than 90 days at 6 °C storage to 5 days at 55 °C. 

Applications 

Since zeins do not have good nutritional value, and are expensive 

(>$20.0/kg), the major applications are limited to food coating and drug tabletting. 

This demand is estimated at approximately 540 thousand kg (1.2 million lb) of zein 

per year (Shukia 1992). However, zein can also be used in other food applications 

such as can'iers and release agents for sweeteners (aspartame) and fat 

replacement using zein microparticulate. Recent research has also shown that zein 

tripeptides can decrease blood pressure because they inhibit angiotensin-converting 

enzymes, and the semiconducting property of zein can be especially valuable in 

developing edible microwave susceptors. 

In addition to food utilization, zein is an excellent candidate for nonfood 

utilization due to its characteristic functional properties such as hydrophobicity, film 

and fiber fomnation. In the 1940's, zein was widely used as an adhesive for cork 

and wood, a paper coating for magazine covers and food containers, a raw material 

for plastics, films, fibers and laminated board (made from zein impregnated paper), 

and as a coating in solid color printing (Swallen 1941). As more low cost and better 
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performing chemicals were developed from petroleum, many uses of zein in non­

food industries were replaced with petro-chemicals in most nonfood applications, 

however, the realization that the supply of petroleum is limited and because of 

environmental concems may open a window of opportunity for zein in these 

applications. 

Zein Distribution in the Com Endosperm 

Zein Synthesis and Protein Body Formation 

Zein appears in the endosperm of the seed approximately 12 days after 

pollination, and continues to accumulate until maturity (approximately 50 days after 

pollination). The amount of alcohol soluble zein increases from 18% of the total 

nitrogen at 15 days to about 42% of the total nitrogen at 43 days after pollination 

(Murphy and Dalby 1971). 

The ̂ ct that zein is located in protein bodies was discovered by Christianson 

et al. (1969) using microscopic examination of the zone sedimentation on a sucrose 

density centrifuge, tests of solubility in 70% ethanol, amino acid composition, and 

starch gel electrophoretic mobility. Zeins are synthesized by membrane bound 

polyribosomes and transfenred into the lumen of the rough endoplasmic reticulum 

(RER) by cleaving the signal peptides, then assembled into protein bodies (Larkins 

and Hurkman 1978). 
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The distribution of various types of zeins, however, does not appear to be 

unifomn throughout the endosperm. Combining immunolocaiization techniques and 

light and electron microscopy, Lending and his coworkers (1988) observed that a-

zeins are located in the center of protein bodies, while p- and y-zeins are commonly 

found in the peripheral and central inclusions. They also observed that the outer 

cell layers of the endosperm have higher concentrations of p-, and y-zeins, and the 

protein bodies within these cells are smaller and contain much less a-zein than 

those in intemal regions of the endospemi (Lending and Larkins 1989). The 

differences in size (0.25-1.3 ̂ m) and zein composition of protein bodies in the 

developing endosperm con'elated with the stages of cell maturity. As cells matured, 

the protein body size increased, concomitant with an increase in the amount of a-

zeins. Based on these results. Lending and Larkins (1989) proposed a model for 

zein deposition during protein body formation. Initial accretions within the RER 

consist of deposits of both p-, and y-zeins, while containing little or no a-zeins. a-

Zeins accumulate later and are obsen/ed within the p-, and y-zeins. In the final 

stages of protein body maturation, a-zeins fill most of the core of the protein body 

and are surrounded by a thin layer of p- and y-zeins. 

Zein in the Hard and Soft Endosperm 

In the endospemi, starch granules are embedded in a protein matrix 

accompanied by fine protein bodies. Protein bodies in the homy endosperm are 
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large and more numerous than in the floury endosperm (Wolf et al. 1969). 

Dombrink-Kurtzman and Bietz (1993) found that hard endosperm has more alcohol-

soluble proteins than soft endosperm, and the fraction of a-zeins is an average of 

3.3 times more in the hard than soft endosperm in normal endosperm genotypes. 

The amounts of y-zeins are similar in both hard and soft endosperms, however, 

since the alcohol-soluble protein in soft endosperm is much less than in hard 

endosperm, the relative percentage of y-zeins in soft endosperm is twice as much 

as in hard endosperm. The authors indicated that soft endosperm contains 

'immature' protein bodies, which have more p- and y-zeins, and hard endosperm 

contained more 'mature' protein bodies with an increased amount of a-zeins. 

Pratt et al. (1995) tried to correlate a-zein content with kernel hardness by 

crossing three different hybrids of maize with low, high and extremely high hardness 

properties. They found that zein class and kernel density were not significantly 

correlated. The association of zein class with kemel hardness and density was 

highly genotype-specific, and there was no consistent relationship between 

individual or total zeins and kernel density across all populations. 

Zein Extraction 

Extractability of Zein 

Zein was first isolated from whole white com with 70% alcohol by Gorham in 

1821 and was given the name 'zein' by him (Swallen 1941). Zein can be extracted 
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from com gluten using 75-95% ethanol at 40-60 °C. then precipitated from the 

alcohol solution by adding salt or acetone, and purified by passing the solution 

through charcoal resulting in a nearly white product (Nykvist 1934). Zein can also 

be extracted from corn gluten using alkaline solutions. Wahl (1934) found that a 

0.25% NaOH solution was the most suitable extracting solvent for zein. After adding 

acid (any acid had the same function), zein was precipitated from the aqueous 

solution. A pH of at least 11.5 was required to dissolve the zeins in an aqueous 

alkaline extract (Swallen 1941). Isopropyl alcohol (or other small chain alcohols, 

such as methanol, ethanol, and n-butanol) mixed with diethylene glycol, ethylene 

glycol, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, 

propylene glycol, or benzyl alcohol, were used to prepare zein solutions directly from 

gluten by Coleman (1944,1945). 

Although zein can be dispersed in many organic and mixed solvents, the 

more common solvent used for laboratory extraction from com flour or CGM is 70-

90% ethanol or 55-88% isopropyl alcohol. The flour or meal is first defatted with 

hexane or ethyl ether; then water- and salt-soluble proteins are removed with 0.5% 

NaCI before the process of zein extraction (Osborne and Mendel 1914). 

Zein extraction yield was improved when 70% ethanol with 0.5% sodium 

acetate was used as the extraction solvent (Nagy et al. 1941). The extraction yield 

was further improved when a reducing agent [i.e., 2-mercaptoethanol (2-ME)] was 

added with 55% isopropyl alcohol (0.6% v/v) (Landry and Moureaux 1970). By 
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using these two improvements, both alcohol-soluble and cross-linked zeins were 

extracted together from com meal. The concentration of 2-ME from 1 to 100 mM 

(0.0078-0.78% w/v) did not affect extraction yield at 60 ®C, however, when the 

extraction was carried out at 25 °C, the extraction yield increased as the 

concentration of 2-ME increased from 1 to 100 mM (Tsai 1980). 

Esen (1986) indicated that a-zeins were extractable from com meal with 60% 

and 90% isopropyl alcohol. Only a limited amount of p-zeins was extracted with 

60% isopropyl alcohol, and no detectable y-zeins were extracted with either 60 or 

90% isopropyl alcohol. All zeins can be completely extracted out by using 60% 

isopropyl alcohol plus 1 % 2-ME solvent after three extractions. Ninety percent 

isopropyl alcohol extracted 75-80% of the total zeins which were composed of 

mainly a-zeins and a few of 5-zeins. Following 90% isopropyl alcohol extraction, the 

extracts with 60% isopropyl alcohol plus 1% 2-ME contained predominantly 40-45% 

p-zeins and 30-35% y-zeins, and only minor a-zeins (Esen et al. 1985). Esen 

(1987) demonstrated that most of the a-zeins did not appear to be present as large 

oligomers and polymers, but as monomers, while all the y-zeins and most of the p-

zeins were oligomers or polymers which are insoluble in aqueous alcohol unless 

intemiolecular disulfide linkages are reduced. 

Based on the solubilities of a-, P-, and y-zeins, a new extraction method was 

developed by Wallace and his co-workers (1990). The extraction Involved 

solubilizing of the total endospenn proteins in an alkaline buffer containing 12.5 mM 
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sodium borate (pl-110), 1% SDS and 2% 2-ME for 60 min at room temperature (rt). 

After centrifugation, the non-zein proteins in the supematant were subsequently 

precipitated by the addition of ethanol to 70% of the final concentration. More than 

98% of a-, P", and y-zeins were extracted from the endospemn meal, and more than 

99% of zeins remained in the final alcohol supematant. 

Wilson (1991) reported that 55% isopropyl alcohol with 5% 2-ME plus 0.5% 

Na acetate (PMA) is an efficient solvent for total zein extraction. About 99% of the 

total a-zein, and over 90% of p-, and y-zeins were extracted from endospemn meal 

by extracting twice using PMA; each extraction was processed for 2 hr (rt). 

Production Zein from Com Gluten Meal 

Zein remained as a laboratory product until commercial production from 

yellow com gluten began in 1939 (Pomes 1971). Zein is abundant in CGM, a by­

product of the wet-milling process. CGM contains 60-70% proteins (db), of which 

zeins account for 60% of the total (db) (Watson and Yah! 1967). 

Zein extracted from CGM has been studied since the 1930's (Swallen and 

Haute 1938; Swallen 1938; Horesi et al. 1941), however, the first commercial 

preparation process for zein extraction from CGM was implemented in 1942, based 

on a patent by Swallen et al. and the Com Products Refining Company (1942). 

CGM was extracted with hot (60 °C) aqueous 85% (v/v) isopropyl alcohol. The 

extract, containing all of the oil in the CGM, xanthophyll pigments, and some water-
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soluble materials, was mixed with hexane at 80-120% of its volume. About 97% of 

the oil, 90-95% of the xanthophyll pigment and most of the isopropyl alcohol 

remained with the hexane. After the hexane layer was separated, zeins were 

precipitated by injecting the extract into cold water, and the precipitated zein was 

spray dried with hot air. About 50% of the protein in the CGM, or 70% of the total 

zein content, could be obtained. A revamped process for zein extracted from CGM 

was built by the Com Products Refining Company which yielded about 6.8 million kg 

(15 million lb) zein per year in 1957 (Forbath 1957). This process reportedly 

reduced process time, maintenance costs and reagent consumption, while 

increased yield by 20%, and simplified the operation. 

Based on the ̂ ct that zein can be dissolved in a dilute alkaline solution 

(Morris et al. 1956), a process for recovering 'whole zeins' from com gluten was 

developed by Morris and Wilson (1959). The product from this process had a 

different zein composition from previous commercially produced zeins which were 

obtained by 85% isopropyl alcohol extraction, because all zeins, not only a-zein, 

were extracted. Zeins were successfully extracted from CGM using an aqueous 

system containing 28-33% (w/w) isopropyl alcohol and at least 6% lime. The 

extraction was more efficient when the system was heated at a temperature ranging 

from 70 °C to the boiling point of the alcohol. The slurry was stirred for 15 min, 

centrifuged, and allowed to cool (to 30 °C) and settle. The supernatant liquor was 

decanted and fresh alcohol solvent was added for a subsequent extraction. After 10 
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extraction cycles, not only a-zeins, but almost all of the p- and Y-zeins were 

obtained. The total process used only one organic solvent (isopropyl alcohol) at a 

low concentration, therefore, the cost of solvent and solvent recovery was very low. 

The current reported commercial method for zein production from CGM is an 

improved process based on Swallen's research. A single step of extraction is 

carried out with 88% (w/w) isopropyl alcohol containing 0.25% NaOH at 55-65 °C. 

The zein-alcohol extract is chilled at -10 to -20 °C to separate zeins from the solvent 

(Carter and Reck 1970). Repetition of the extraction with 88% isopropyl alcohol, 

followed by cooling and decanting cycles, are carried out to increase in zein purity. 

The process does not require solvent distillation which may cause denaturation of 

proteins; therefore, high quality zein can be obtained. Another advantage is that a 

second solvent is not required for oil and pigment removal. The operating costs, 

due to the solvent mixture recovery system required, are decreased, and the 

operation is reportedly more safe. However, low yields (20-24%) and variable zein 

quality (i.e. gelling properties) are still problem (Dimitroglou and Breene 1994). 

Today, only one company. Freeman industries, Inc., Tuckahoe NY, produces zein 

using a process reportedly similar to the Carter and Reck patented process. 
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Com Wet-Milling Process 

Wet IMilling General Procedure 

The amount of com wet milled in this country has increased in response to 

the increased demand for sweeteners and fuel-grade ethanol. About 1.2 billion 

bushels of com were processed by the wet milling process in 1993. As a by-product 

of wet milling, the amount of CGM available has also increased. An estimated 922 

million kg (2,031 million lb) CGM was produced in 1993 (Andreas 1994). Most of 

the CGM is used as a high-protein feed for poultry, and only a very small amount of 

CGM is used to produce zein. 

The general wet milling process consists of steeping com in an aqueous 

solution of 0.1-0.25% SO2 at 48-52 °C for 24-50 hr. The diffusion of SO2 into the 

endospemi ultimately releases starch from the protein matrix. The SO2 also 

prevents the growth of putrefactive organisms and softens the com kernel. About 

7% of the total dry weight of com is solubilized into the steep water, including 

minerals, vitamins, soluble proteins, and sugars. After steeping, the com at 45% 

moisture is coarsely ground, and the germs are separated. A second milling grinds 

the starch and protein into a fine powder, and the hull and fiber (In larger piece 

sizes) are removed by a 200-mesh screen. Starch Is separated from proteins (often 

refenred to as gluten) using a centrifuge based on their different densities. Starch, 

the main product of wet milling, Is used in food and non-food applications. 

Steepwater, germ, fiber, and gluten are dried and sold as by-products Including: 
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steep water as a nutrient source in biochemical fermentations, gemi to produce com 

oil, the mixture of steepwater, defatted germ meal and fiber as gluten feed, and 

gluten as CGM (Watson et al. 1951; Anderson 1963; Eckhoff 1992). 

Pilot-Plant Wet-Milling Processes 

A pilot-plant wet-milling operation can be used for milling large quantities of 

com for the purpose of generating information needed for plant scale up. A typical 

pilot-plant processing method and facilities for wet-milling were described by 

Anderson (1957). Four bushels of grain were steeped in a batch process using a 

conical bottom tank in which steepwater was drawn continuously from the bottom, 

passed through a heat exchanger and added back into the steeping tank. The 

steeped grain was then fed by a screw conveyor to an 8 inch (0.20 m) Bauer mill 

(single running disc grinder) for the first grinding. The germ was separated by 

floatation from the starch slurry, screened, and washed on a Rotex gyratory shaker 

with a 60-mesh screen. The underflow from the germ separator was dewatered on 

the shaker with a 200-mesh screen, and passed though either a buhr-stone mill 

(single runner type) or a Rietz disintegrator (a vertical attrition mill) for the second 

grinding. The material after the second grinding was passed over the Rotex shaker 

with a 26-mesh screen for the recovery of the coarse fiber. The underflow was then 

passed though the second shaker equipped with a 200-mesh screen to recover fine 

fiber. The remaining mill starch slurry can be separated into starch and gluten by 
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either tabling or centrifugation after adjusting the specific gravity of the slurry. The 

pilot plant starch table was 14 m (46 ft) long and 0.3 m (12 in) wide and had a pitch 

of 0.06 m (2.5 in) for its entire length (about 0.26°). 

Rubens (1990) described a pilot-plant wet-milling which more closely parallels 

commercial milling operations. The process involves two grinding steps with germ 

removal after the first grind by hydrocyclones; starch/protein separation was 

achieved with hydroclones and a disc-type centrifuge. Three bushels of com were 

steeped in the batch-type operation. Steepwater was continuously circulated over 

the com, and temperature, pH, and SO2 concentration were controlled. After 

steeping, the soften com was milled in a Foos-type mill (Sprout Waldron) (single 

running disc grinder) at 900 rpm. The slurry was then adjusted with water to a 

specific gravity of 1.059 -1.066, and processed in a hydrocyclone (Dorr-Oliver, 0.06 

m (3 in), type NZ Donrclone) for germ recovery. After genn removal, the fiber was 

separated by grinding using a refiner equipped with fine bar plates and operated at 

3,100 rpm, followed by fiber recovery using a vibrating about 1.22 m (48 in) 

screening device (Sweco) with a 230-mesh screen. Final separation of the starch 

and gluten is accomplished using hydroclones (Dorr-Oliver 10 mm Dorrclones) for 

thickening, primary separation and washing. The starch was then transferred to a 

0.91 m (36 in) basket centrifuge with a fabric filter surface for dewatering, and dried 

in a flash dryer. The pilot plant process he described for dent com gave a starch 

yield of 58.8% with 0.63% protein. 
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Drying of Com Gluten Meal 

Since high starch recovery is the primary goal of wet milling, and most CGM 

is used as poultry feed, there is less attention given to the quality of CGM. 

Commercially, gluten is thickened with a nozzle bowl centrifuge and dewatered by 

either a decanting centrifuge or a rotary drum filter (Blanchard 1992). The thickened 

gluten with 55-60% moisture is dried to 12% moisture by flash, rotary, or steam 

heated tubular dryers. Flash dryers process less material, have relatively short 

retention times (few seconds), and less thermal efRciency. Rotary dryers are 

relatively inexpensive and simple, but are cumbersome and difficult to control, so 

that scorching of gluten is common. Steam tubular dryers are more efficient than 

flash dryers and relatively inexpensive as well. Therefore, the steam tubular 

systems have been the dryers of choice in recent years. The drying temperature is 

typically less than 400 °C to avoid a daric colored product, burnt particles, and 

offensive odor and haze in the dryer exhaust (May 1987). 

Influence of Drying Conditions on Com Proteins 

The severity of artificial drying may cause chemical and physical changes of 

wet-milled products. Extensive heat can not only decrease starch yield and purity, 

but can also decrease the amount of extractable proteins. McGuire and Earie 

(1958) found that the proteins extracted from com using water, 5% salt solution, and 

0.01 N KOH solution were decreased significantly (P<0.05) with increased drying 
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temperature of the kernels in the range of 48.9 to 93.3 °C. The nitrogen content 

extracted with 60% ethanol at 79.4 °C had no effect on kernels that had been air 

dried or dried at 93.3 °C. There was also no indication that any critical damage had 

occurred at any particular com kemel drying temperature. The soluble protein 

contents in the filtrate of the steepwater and ground steeped grain were decreased 

when the drying temperature of com kernels increased from 60 to 93 °C (Watson 

and Hirata 1962). Wall et al. (1975) reported that a substantial decrease in salt-

soluble proteins and a small decrease in alcohol soluble (70% ethanol) proteins 

occunred when whole com was dried from 25 to 15% moisture at 143 °C. They 

concluded that extensive heat treatment of native whole com denatures protein 

resulting in molecular aggregation through noncovalent hydrophobic interaction and 

covalent disulfide cross-links that contribute to protein insolubility. Weller et al. 

(1987) observed that severe decreases in ethanol (70%) soluble protein content 

occurred when the highest harvest moisture com (30% moisture) were dried from 50 

to 71 °C. The loss in solubility was most likely due to chain unfolding and the 

formation of new intermolecular disulfide bonds within the endosperm protein. 

Influence of CGM Processing on Zein Properties 

The influence of commercial processing on the properties of zein was studied 

by Boundy et al. (1967). Zein extracted directly from com endosperm (lab zein) has 

a lower sulfur content than the zein obtained from CGM (commercial zein) due to 
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the SO2 in the steeping process associating with zein to form S-suifocysteine 

residues. No free sutfhydryl groups were present in any of the zein samples. All 

cysteine/cystine residues in lab-produced zein were in the disulfide form, but only 

30% of the cysteine/cystine in the commercial zein was present in disulfide form, 

others were in the S-sulfocysteine form. 

Neumann and his co-workers (1984) compared the proteins extracted from 

commercially-produced wet and dried CGM. They reported that the amount of 

alcohol soluble proteins was greater from CGM than from native com due to the 

action of the SO2 cleavage of disulfide bonds in the steepwater. Wet CGM 

contained more salt-soluble proteins than dried CGM, but the amount of alcohol 

soluble protein was only slightly higher in the wet CGM compared to dried CGM. 

Both CGM samples had the same amount of total sulfur-containing amino acids and 

S-sulfocysteine, but dried CGM had no cysteine compared to the 9.9% of cysteine 

found in the total cysteine/cystine content in the wet CGM. The absence of cysteine 

and large amount of cystine in the dried CGM must be due to the quantitative 

oxidation of sulfhydrals to the disulfide bond during heating. The S-sulfo linkage 

was stable at neutral and mildly acidic pH, and S-sulfocysteine was not degraded by 

the commercial drying. 
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3. FACTORS AFFECTING YIELD AND COMPOSITION OF ZEIN 
EXTRACTED FROM COMMERCIAL CORN GLUTEN MEAL 

A paper to be submitted to Cereal Chemistry 

Shaowen Wu\ Deland J. Myers '̂̂  and Lawrence A. Johnson '̂̂  

ABSTRACT 

Twelve com gluten meal samples obtained from six wet-milling plants were 

processed into zein. Zein was extracted using 88% aqueous isopropyl alcohol at pH 

12.5, followed by chilling. Protein recovery ranged from 21.3 to 32.0%, and protein 

purity from 82.1 to 87.6%. Protein recovery increased as the protein purity 

increased, with a conrelation coefficient of r = 0.76 (p<0.01). One of the major 

factors influencing extraction yield was protein composition; especially a-zein 

content which ranged from 53.4 to 64% of the total protein in the com gluten meal 

samples. The intensity of red color of the com gluten meal was negatively 

con'elated with protein recovery and zein purity with correlation coefficients of r = -

0.66 and -0.72 (p<0.02), respectively. 
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INTRODUCTION 

Zein, the predominant storage protein found in maize, was initially 

designated as a prolamine by Osborne based on its solubility in aqueous alcohol 

solution and its high content of proline, glutamine and asparagine (Osbome and 

Mendel 1914). Zein is a heterogeneous protein separable into four classes based 

on solubility, amino acid composition, electrophoretic, and immunological properties 

(Shewry and Tatham 1990; Wilson 1991). The major group of proteins in zein, a-

zeins (MW 19,000 and 22,000 D), account for about 71-85% of the total zein 

fraction. p-Zeins (MW 14,000 D) are 1-5% of the total zein fraction, and y-zeins 

(MW 28,000 and 16,000 D) are 10-20% (Wilson 1991). 6-Zeins (MW 10,000 D) 

comprise the remaining 1-5%. 

Com gluten meal (CGM) is a valuable co-product of the wet-milling process 

and is used primarily as poultry feed because of its high xanthophyll and protein and 

low fiber contents. CGM contains 60-70% protein, and zein comprises about 60% of 

the total protein on a dry basis (db). Zein isolation from CGM has been studied 

since the 1930's. Nykvist (1934) reported that zein was extracted from CGM using a 

75-95% ethanol solution at 40-60 °C, then precipitated from the alcohol solution by 

adding salt or acetone. Swallen and his coworkers studied every step and 

apparatus related to zein extraction (Swallen and Haute 1938; Swallen 1938; Horesi 

et al. 1941). In 1942, the first commercial process for zein extraction from CGM 

was implemented based on a patent by Swallen et al. and the Com Products 
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Refining Company (Swallen and Haute 1942). CGM was extracted with hot (60 °C) 

aqueous 85% (v/v) isopropyl alcohol, then hexane was added to the clarified extract 

by removing the oil and pigments. After the hexane layer was removed, zeins were 

precipitated by adjusting the polarity with cold water, and then spray dried. The 

reported yield was 50% based on the weight of the protein content in the CGM. The 

process used of two solvents and was relatively expensive. 

Based on the fact that zein can be dissolved in dilute alkali, Wahl (1934) 

extracted zein from CGM using a 0.25% NaOH solution. A pH of at least 11.5 with a 

total alkali content of about 1.2% NaOH (based on the weight of zein) is required 

(Swallen 1941). Morris and his co-workers (1956 and 1959) developed a process 

with an extraction solvent containing a low level of organic solvent and Ca(OH)2. 

Whole zein (including a-, p-, and y-zeins) was successfully extracted from CGM 

using an aqueous system containing 28-33% (w/w) isopropyl alcohol and at least 

6% lime. The extraction was more effective when the system was heated to a 

temperature ranging from 70 "C to the boiling point of isopropyl alcohol. The sluny 

was stirred for 15 min, centrifuged, and allowed to cool and settle. The amount of 

total N extracted was about 75%. The supernatant liquor was then decanted and 

added to fresh alcohol solvent for subsequent extraction. After 10 extraction cycles, 

the zein contained only 2% of the oil, color bodies and other non-protein impurities. 

Because the extract did not have to be treated with hexane, the process eliminated 
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the cost of hexane in the defatting step that involved separation and recovery of 

mixed solvents. 

The current reported commercial method for zein production from CGM is an 

improved process based on Swallen's research (1941). A single extraction is 

canied out with 88% (w/w) isopropyl alcohol containing 0.25% NaOH at 55-65 °C. 

The extract is chilled at -10 to -20 °C to precipitate zeins from the solvent (Carter 

and Reck 1970). An increasing zein purity results from repetition of the process 

using 88% isopropyl alcohol followed by the cooling and decanting cycles. The 

process does not require separation of zein from the solvent by distillation or an 

additional extraction with a second solvent (e.g. acetone). Another advantage is 

that an additional solvent is not required for oil and pigment removal. The operating 

costs, due to the complex solvent mixture recovery system required, can be 

decreased, and the operation is reported to be more safe. However, the low yield 

(about 20-24% of initial CGM weight) and variable quality (e.g. protein content, color 

intensity, and gelling properties in alcohol solution) of extracted zeins are still 

problems (Dimitroglou and Breene 1994). 

Since zein is an excellent candidate for food and non-food uses because of 

its unique properties, such as hydrophobicity and film and fiber formation, methods 

to improve production yield are extremely important to increase zein utilization. If 

the factors that influence the yield of zein were identified, yields might be 

significantly increased. The objectives of this research project were to: 1) measure 
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and compare the yields and purities of zein recovered from commercial CGM; and 

2) identify the factors that influence zein recovery and quality. 

MATERIALS AND METHODS 

Com Gluten Meal Samples 

Twelve CGM samples were obtained from six different wet-milling plants in 

Iowa and Illinois. 

Extraction of Zein 

CGMs were extracted in the lab based on the procedure of Carter and Reck 

(1970). CGM (30 g) was continuously stin-ed in a 400-ml beaker with 120 g of 

extracting solvent containing 88% (w/w) isopropyl alcohol and 12% (w/w) pH 12.5 

aqueous NaOH at 60 ®C for 1 hr (Fig. 1). The mixture was centrifuged for 15 min at 

8,000 X g in a Beckman Model J2-21 centrifuge (Palo Alto, CA); the supernatant 

was decanted and filtered to remove the alcohol insoluble residue. About 50 ml of 

the extraction solvent was used to wash the residue. The filtered solution was 

chilled to -18 °C overnight using a refrigerated bath. The zeins formed a taffy-like 

bottom layer precipitate and the top clear solution was decanted. For purifying 

zeins, 120 g of 88% aqueous isopropyl alcohol was added to redissolve the zeins at 

room temperature (rt), followed again by chilling and cool centrifuging. The 

precipitated zein was dried in a vacuum oven at about 50 °C and 0.6-0.8 bar 
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pressure. The extraction process was replicated five times for each CGM sample. 

Zein yield was calculated as the percentage of the extracted zein weight from 

the total CGM weight (db). Protein recovery was calculated as the percentage of 

the protein in the extracted zein from the protein of the CGM. Protein purity was 

defined as the protein content in the extracted zein. 

Proximate Analysis 

Moisture contents of the CGM samples were determined by the Karl Fischer 

method E203-75 (ASTM 1975) using a Karl Fischer automatic titrator (Fisher 

Scientific Model 392, Pittsburgh, PA). The crude iaX content was measured using 

the Goldfisch apparatus (Laboratory Construction Co., Kansas City, MO) method 

30-20 (AACC 1983). The nitrogen contents in CGM and zein samples were 

determined by Kjeldahl (Tecator, Sweden) analysis, method A-18 (CRA1986), and 

the protein content was estimated by using the nitrogen conversion factor of 6.25. 

Color Measurement 

The HunterLab Labscan (Hunter, Fairfax, VA) was used to measure the color 

of the CGM samples. The L value indicates the lightness, 0 to 100 representing 

dark to light. The a value gives the degree of the red/green color, with a higher 

positive a value indicating more red. The b value indicates the degree of the 

yellow/blue color, with a higher positive b value indicating more yellow. 



www.manaraa.com

Protein Fraction Isolation and HPLC Analysis 

The CGM samples (0.40 g) were extracted in 50-ml centrifuge tubes with 10 

ml of 0.5 M NaCI solution. The mixture was shaken for 20 min (rt) at 130 rpm, and 

centrifuged at 15,000 x g for 15 min in a Beckman Model J2-21 centrifuge. The 

supernatant containing water and salt-soluble proteins was collected, and the 

extraction procedure was repeated one time. The precipitate was then extracted 

with 10 ml of 55% (v/v) isopropyl alcohol and 5% (v/v) 2-mercaptoethanol plus 0.5% 

(w/v) sodium acetate solvent (PMA). The mixture was shaken for 2 hr (rt) and 

centrifuged at 15,000 x g for 15 min. The supematant containing total zeins was 

collected for high perfomnance liquid chromatography (HPLC) analysis, and the 

residue was washed twice with 10 ml of PMA. The protein contents of the water-

and salt-soluble fraction and PMA insoluble residue were determined by using the 

Kjeldahl method. 

The reverse phase high performance liquid chromatography (RP-HPLC) 

system consisted of a Beckman Model 110A pump system (Fullerton, CA), an ISCO 

UV detector (214 nm) (Lincoln, NE), an AXXI-CHROM Model 710 microprocessor 

HPLC solvent programmer/system controller (Cole Scientific Inc., Los Angeles, CA), 

and a Shimadzu Model R3A integrator and printer (Kyoto, Japan). A Vydac 

(Hesperia, CA) Cia column (25 cm x 4.6 mm, 5-nm particle size, 300 A pore size) 

was used to analyze the a-, p-, and y-zein contents in the samples (Dombrink-

Kurtzman and Bietz 1993). A 20-̂ 1 sample (about 25 |ag protein) was injected for 
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analysis. Solvent A [15% (v/v) acetonitrile (ACN) plus 0.1% (v/v) trifluoroacetic acid 

(TFA)] and solvent B [80% ACN plus 0.1% TFA] were used to make a non-linear 

gradient. The starting buffer was 38.4% ACN, increasing at 0.8125 %/min for 10 

min, 0.093 %/min for 7 min, 0.609 %/min for 8 min, 0.188 %/min for 35 min, and 

1.95 %/min for 3 min, ending at 64.4% ACN. The column was eluted at 56 °C and 

1.0 ml/min solvent flow rate. 

Statistical Analysis 

Analysis of variance was used to determine significant effects using the 5% 

significant level for least significant differences (LSD). Correlation coefficients were 

calculated by using the SAS correlation procedure. 

RESULTS AND DISCUSSION 

Proximate Composition and Color of the CGM 

The CGM samples differed significantly in proximate composition, most 

notably in protein content and color (Table I). Protein contents of the CGM samples 

ranged from 61.5 to 74.0% (db). In regard to color, the samples looked obviously 

different. Lightness of the CGM samples was highly correlated with yellow color (r = 

0.95 for L and b values at p<0.0001), and negatively correlated with the red color (r 

= -0.54 for L and a values at p<0.1). The differences in the proximate composition 
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and color may be caused by com hybrid, com treatment and storage, the wet-milling 

process, and CGM drying conditions. 

Zein Extraction Yield and Purity 

Zein yield ranged from 17.2 to 26.6%, while protein purity ranged from 82.1 to 

87.6% (Table II). There were significant differences in zein yield and purity among 

the samples (p<0.001). Over 70% of the error In zein extraction yield and purity was 

contributed by the CGM samples, and the rest of the error was contributed from 

replication. 

There was a linear trend between the protein recovery and zein purity (Fig. 

2). The protein recovery increased significantly as protein purity increased with a 

correlation coefficient of 0.76 (p<0.01). The relationship of zein yield and protein 

purity had a similar linear trend as that of protein recovery. The zein yield positively 

correlated with the protein purity with a correlation coefficient r = 0.61 at the 0.05 

significance level. Thus, when the yield of extracted zein is high, the extracted zein 

has a high protein content. 

Influence of Color on Zein Recovery and Purity 

The red color of the CGM influenced zein extraction yield and purity. The 

protein recovery decreased as the a-value of CGM increased. The correlation 

coefficient between protein recovery and a-value of the twelve samples was -0.66 
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(Fig. 3) having a significance level of p<0.02. The zein yield also decreased as the 

a-value of CGM increased (r = -0.57 at p<0.1). A -0.72 correlation coefficient 

(p<0.01) showed that protein purity was also significantly negatively correlated with 

red color (Fig. 4), which indicates that less protein or more impurities were extracted 

from CGM high in red color. Because the red color is likely intensified during drying 

of the CGM, a larger a-value may be an indication of chemical browning during more 

"severe" drying. High drying temperature can denature and aggregate zeins, and 

tightly bind zeins with other components present, thus decreasing protein recovery 

and protein purity. 

Since the wet-milling plants that the CGM samples were collected from have 

different steeping and milling procedures, CGM drying systems (e.g. flash dryer or 

rotary dryer) and drying temperatures (May 1991), it is difficult to simply compare 

sample color and obtain a relationship between the drying of the CGM and the 

denaturation or aggregation of zein. However, the intensity of the red color may be 

used as an indirect parameter to measure the loss of zein extraction capability. 

The moisture and fat contents in the CGM ranged from 5.94 -11.72 % and 

0.91-2.35 % (Table 1), respectively, and did not influence the zein extraction yield or 

purity. 
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Influence of the Zein Content of CGM on Zein Extraction Yield 

The protein fraction analysis measured the level of water- and salt-soluble, 

alcohol-soluble (plus reducing agent), and alcohol-insoluble proteins present in 

CGM. The differences in the levels of these protein fractions between CGM 

samples were significant (Table III). Alcohol-soluble proteins, zeins, ranged from 40 

to 50% (db) of the total weight of the CGM and were 60-71% of the protein content 

in CGM. The water- and salt-soluble proteins were only 2-6% (db) of the weight of 

CGM. The alcohol-soluble and salt-soluble protein contents in CGMs were similar 

to results reported by Neumann et al. (1984). 

Small amounts of p-zein (0.7-2.9%) and y-zein (4.7-10.6%) were present in 

the CGM, but much higher contents of a-zein (86.1-93.8%) were presented in the 

CGM samples (Table IV). The ratio of a-zein to the protein content of CGM, 

calculated by dividing the amount of a-zeins by the protein content of the CGM, 

ranged from 53.4 to 64.0% among CGM samples. 

The differences in the total extractable zein and a-zein contents among 

samples could be attributed to the com hybrid (Wilson 1991; Dombrink-Kurtzman 

and Bietz 1993). The differences in the way that com gluten was dried may also 

account for these difference because of protein denaturation. 

Zeins can be dissolved in aqueous alcohol, and the solubilities are different 

according to their class. a-Zeins and 5-zeins can be easily extracted with 90% 

isopropyl alcohol. p-Zeins and y-zeins cannot be extracted with 90% isopropyl 
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alcohol solution, but they can be extracted along with a-zeins using 60% isopropyl 

alcohol (Esen 1986). |3-Zeins are methionine-rich and y-zeins are proline-rich, and 

both (y, P) occur as large homo or hetero oligomers and multimers linked through 

intennolecular disulfide bonds. Therefore, p- and y-zeins can be extracted by a 

solvent with a reducing reagent, e.g., 2-mercaptoethanol. When using 88% 

isopropyl alcohol without a reducing reagent, as is the extraction solvent in our 

procedure, the extraction product should contain almost exclusive a-zeins and 

possible tiny amounts of 5-zeins. Therefore, total zein or total a-zein content of the 

CGM should be monitored to control zein extraction and obtain stable yields and 

qualities. 

The protein content of CGM in our investigation was significantly correlated 

with total zein content (r = 0.72) and the total a-zein content (r = 0.75) at the 0.01 

significance level. Zein yield was positively correlated with the protein content of 

CGM, and more highly conrelated with the total a-zein content in the CGM. Both 

plots of zein yields to protein contents of CGMs and to the total a-zein contents in 

the CGMs showed that there was an increased linear trend in the data (Figs. 5 and 

6). The relationship of zein extraction yields to total a-zein contents had a 

correlation coefficient of 0.55 (p<0.1), compared to 0.48 (p<0.12) between yields 

and the protein contents of CGMs. The relatively low correlation coefficient values 

in the yield to protein and a-zein content could be due to the small sample pool (only 

12 samples) for the statistical analysis. 
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The Relationships of Red Color and a-Zein Content With Zein Yield and Purity 

Three dimensional scatter graphs show the relationships of a-zein content 

and red color intensity in the CGM with zein extraction yield and protein purity. Zein 

yield was the highest at the highest a-zein content and the lowest red color intensity, 

and the lowest at the lowest a-zein content and the highest red color intensity in the 

CGM (Fig. 7). Both red color intensity and a-zein content in CGM function together 

and affect extraction yield. When a low yield was obtained from a relatively high red 

color CGM with high a-zein content, the red color may caused by overheating during 

drying. When a relative high yield was obtained from high red color CGM with high 

a-zein content, the red color may be caused by com hybrid. Protein recovery had 

similar associations with a-zein content and red color intensity in CGM as the yield. 

Lower red color intensity in CGM gave the higher protein purity, and the protein 

purity also increased as the a-zein content increased (Fig. 8). 

Extraction Efficiency From the Commercial CGM 

Comparing the protein recovery value (Table II) with the ratio of a-zeins to the 

protein content of the CGM (Table IV), this extraction method only obtained 

approximately 35-50% of the extractable a-zeins in the CGM. The low extraction 

efficiency may be due to disulfide bonds present among zeins and other proteins 

because no reducing reagent was used during extraction. Some zeins form 

oligomers or polymers by cross-linking disulfide bonds which impede the extraction 
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with alcohol (Neumann 1984). The lower extraction efficiency may also be due to 

hydrophobic interactions between zeins and other proteins, or other compounds 

such as lipids, decreasing the solubility of zein in alcohol solution. 

CONCLUSIONS 

Zein was extracted from 12 CGM samples with a high temperature (60 °C) 

solvent extraction process followed by chill separation. Zein yield and protein 

recovery were positively correlated with zein purity. As the total zein content, 

especially total a-zein content, increased in the CGM samples, zein yield and 

protein recovery also increased. High red color of the CGM had a negative effect on 

the zein extraction yield, protein recovery and zein purity. Both a-zein content and 

red color intensity function together and affect zein extraction yield and purity. 

ACKNOWLEDGMENT 

Special thanks is given to Dr. Nenad M. Kostic of the Department of 

Chemistry, Iowa State University, for the use of his laboratory, and Dr. David F. Cox 

of the Department of Statistics, Iowa State University, for his assistance with the 

statistical analysis. 



www.manaraa.com

51 

LITERATURE CITED 

AMERICAN ASSOCIATION OF CEREAL CHEMISTS. 1983. Approved Methods of 

the AACC, 8th ed. Method 30-20, final approved April 1961, revised October 

1975, reviewed October 1982. The Association; St. Paul, MN. 

AMERICAN SOCIETY OF TESTING MATERIALS. 1975. American Society for 

Testing and Materials Standard Method, E 203-75, reapproved in 1986. ASTM: 

Philadelphia, PA. 

CARTER, R., and RECK, D. R. 1970. Low temperature solvent extraction process 

for producing high quality zein. U. S. Patent: 3,535,305. 

CORN REFINERS ASSOCIATION. 1986. Standard Analytical Methods of the 

Member Companies of Com Industry Research Foundation. Method A-18, first 

revised June 1980. The Association: Washington, DC. 

DOMBRINK-KURTZMAN, M. A., and BIETZ, J. A. 1993. Zein composition in hard 

and soft endospemi of maize. Cereal Chem. 70:105-108. 

ESEN, A. 1986. Separation of alcohol-soluble proteins (zeins) from maize into 

three fractions by differential solubility. Plant Physiol. 80:623-627. 

HORESI, A. C., GROVE, D., FLINT, A. H., and SWALLEN, L C. 1941. 

Precipitation of zein by spraying. U. S. Patent: 2,238,590. 

MAY, J. B. 1987. Wet milling: process and products. Pages 377-397 in: Com 

Chemistry and Technology. S. A. Watson and P. E. Ramstad, eds. Second 

Printing, 1991. American Association of Cereal Chemists: St. Paul, MN. 



www.manaraa.com

MORRIS, L, and W/ILSON, A. L 1959. Process for recovering whole zein. U.S. 

Patent: 2,882,265. 

MORRIS, L, LINGER, L G., and WILSON, A. L. 1956. Purification and recovery of 

zein. U. S. Patent: 2,733,234. 

NEUMANN. P. E., WALL, J. S., and WALKER, C. E. 1984. Chemical and physical 

properties of proteins in wet-milled com gluten. Cereal Chem. 61:353-356. 

NYKVIST, F. 1934. Studies on the commercial preparation of zein from corn-

gluten. The thesis. Iowa State University. Ames, lA. 

OSBORNE, T. B., and MENDEL, L. B. 1914. Nutritive properties of proteins of the 

maize kernel. J. Biol. Chem. 18:1-16. 

SHEWRY, P. R., and TATHAM, A. S. 1990. The prolamin storage proteins of 

cereal seeds: structure and evolution. Biochem. J. 267:1-3. 

SWALLEN, L. C. 1938. Process for the production of zein. U. S. Patent: 

2,133,591. 

SWALLEN, L. C. 1941. Zein-a new industrial protein. Ind. Eng. Chem. 33:394-

398. 

SWALLEN, L. C. 1942. Process for the production of zein. U. S. Patent: 

2,287,649. 

SWALLEN, L. C., and HAUTE, T. 1938. Process for the production of zein. U.S. 

Patent: 2,105,760. 



www.manaraa.com

53 

WAHL, J. 1934. Extraction of zein from com gluten by use of alkaline solvents. The 

thesis. Iowa State University. Ames, lA. 

WILSON, C. M. 1991. Multiple zeins from maize endosperms characterized by 

reversed-phase high performance liquid chromatography. Plant Physiol. 

95:777-786. 



www.manaraa.com

54 

Table I 
Proximate Compositions and Colors of Commercial Com Gluten Meal Samples  ̂

CGM Moisture Fat Protein Color 
(%) (% db) (% db) L a b 

A 7.19 h 1.08 gh 73.0 b 55.86 b 4.38 g 23.37 ef 
B 8.78 e 1.57 e 68.7 f 50.37 f 6.48 e 23.14 f 
C 5.94 j 1.14g 66.8 g 45.63 g 7.37 be 20.90 g 
D 6.67 i 1.68 de 66.3 h 52.22 e 7.46 be 23.91 e 
E 10.10 b 1.89 c 66.2 h 54.35 d 7.04 d 24.88 d 
F 9.54 c 1.06 gh 71.6 c 55.42 cd 7.62 b 25.50 cd 
G 11.72 a 2.35 a 74.0 a 56.95 b 7.66 b 26.29 b 
H 9.29 d 1.71 d 69.8 d 50.44 f 8.60 a 23.44 ef 
1 7.51 g 1.74 d 65.5 i 43.56 h 8.52 a 19.64 h 
J 8.05 f 1.40 f 69.1 e 52.11 e 7.69 b 23.62 ef 
K 8.76 e 2.08 b 61.5 j 64.11 a 5.72 f 27.75 a 
L 8.07 f 0.91 i 69.1 6 56.84 be 7.12 cd 25.90 be 

 ̂ Means followed by different letters within the same column are significantly 
different (p<0.05). 



www.manaraa.com

55 

Table II 
Yields, Protein Purities and Protein Recoveries of Extracted Zein® 

CGM Yield (%) Protein Purity (%) Protein Recovery (%) 
A 26.6 a 87.6 a 32.0 a 
B 24.1 b 86.3 be 30.3 ab 
C 21.7 cd 85.8 cd 27.9 be 
D 22.5 be 84.8 def 28.9 b 
E 22.6 be 87.5 ab 29.8 ab 
F 22.3 be 84.1 efg 26.2 cd 
G 22.5 be 84.3 efg 25.6 cd 
H 18.8 ef 82.1 h 22.1 ef 
1 17.2 f 84.0 fg 21.9ef 
J 20.2 de 83.1 gh 24.3 de 
K 18.6 ef 84.8 def 25.6 cd 
L 17.3 f 85.4 cde 21.3 f 

 ̂ Means followed by different letters within the same column are significantly 
different (p<0.05). 
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Table III 
Protein Compositions (%) of Com Gluten Meal Samples  ̂

CGM Albumins & Zeins Alcohol-Insoluble 
Globulins Proteins 

A 2.8 g 49.8 a 20.4 e 
B 3.4 f 44.8 d 20.5 de 
C 4.5 c 41.8 e 20.5 de 
D 4.2 cd 39.8 g 22.3 be 
E 3.7 ef 47.1 b 15.4 g 
F 2.1 hi 46.8 b 22.7 b 
G 6.1 a 47.0 b 20.9 d 
H 2.5 gh 45.4 c 21.9 c 
1 1.91 41.7 e 21.9 c 
J 2.01 41.5ef 25.6 a 
K 5.0 b 41.1 f 15.4 g 
L 4.0 de 45.4 c 19.7 f 

 ̂ Means followed by different letters within the same column are significantly 
different (p<0.05). 
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Table IV 
Zein Contents of Com Gluten Meal Samples 

CGM a-Zeins in p-Zeins in y-Zeins in a-Zeins to the 
Total Zeins  ̂ Total Zeins® Total Zeins® Proteins in CGM 

(%) (%) (%) (%) 
A 93.8 a 0.74 e 4.67 e 64.0 
B 91.0 be 1.66 be 5.56 de 59.3 
C 89.4 cd 1.03 de 8.07 b 55.9 
D 89.0 cd 2.18 b 6.86 bed 53.4 
E 88.5 de 1.97 c 7.20 be 63.0 
F 87.6 de 2.12 b 7.71 b 57.3 
G 89.1 cd 2.94 a 5.49 de 56.6 
H 89.6 bed 2.07 b 6.58 bed 58.3 
1 86.1 e 1.39 cd 10.58 a 54.8 
J 92.0 ab 1.35 cd 5.44 de 55.3 
K 87.7 de 1.81 be 8.04 b 58.6 
L 92.0 ab 1.03 de 5.76 ede 60.4 

 ̂ Means followed by different letters within the same column are significantly 
different (p<0.05). 
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Com gluten meal 
88% IPA and 12% pH 12.5 aqueous 

(1:4 mealisolvent) 

FILTRATION 

EXTRACTION 
Stir 1 hr at 60 °C 

CENTRIFUGING 
8000 xg. 15 min 

Solid 

88%IPA 

Precipitate 
Supernatant 

CHILUNG(-18"'C) 

REDISSOLVING 

CHILLING(-18°C) 

CENTRIFUGING 
8000 X g.lS min.-18°C 

Supernatant Predpitate 

VACUUM DRYING 
at 50°C, 0.6 bar 

Fig. 1. Laboratory zein extraction diagram. Zein 
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Fig. 2. Relationship between protein recovery and purity of extracted zein. 
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a-Value (Red) 

Fig. 3. Relationship between protein recovery and the red color of the corn gluten meal samples. 
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a-Value (Red) 

Fig. 4. Relationship between the zein extraction purity and the red color of the corn gluten 
meal samples. 
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Protein (%) 

Fig. S. Relationship between the zein extraction yield and the protein content of corn 
gluten meal samples. 
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Total a- zeins (%) 

Fig. 6. Relationship between zein extraction yield and the total a-zein content in the corn 
gluten meal samples. 
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Fig. 7. Relationships between extraction yield and the total a-zein content 
and red color intensity of the com gluten meal samples. 
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Fig. 8. Relationships between protein purity of extracted zein and the total 
a-zein content and red color intensity of the com gluten meal samples. 
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4. NOTE ON A PILOT-PLANT WET-MILLING PROCESS FOR 
PRODUCING CORN GLUTEN MEAL 

A paper to be submitted to Cereal Chemistry 

Shaowen Wu\ Deland J. Myers '̂̂ , Lawrence A. Johnson '̂̂ , 
Steven R. Fox\ and Suvrat. K. Singh  ̂

ABSTRACT 

Com gluten meal with a relatively higher protein content was produced 

successfully in a pilot-plant wet-milling facility. Higher yield and protein content 

gluten was produced from the com with higher protein content. Drying gluten with 

low heat produced a lighter colored com gluten meal than high temperature dried 

gluten meal. Maize hybrid also affected the color of com gluten meal. 
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INTRODUCTION 

The amount of com processed by the wet-milling industry has grown rapidly 

as the demand of sweeteners and fuel-grade ethanol has increased. About 1.2 

billion bushels of com was processed by wet milling in 1993 (Andreas 1994). As a 

co-product of wet milling, the amount corn gluten meal (CGM) produced has also 

increased. It was estimated that about 922 million kg (2,031 million lbs) of CGM 

was produced in 1993. Most of the CGM was used as a high-protein feed for 

poultry; only a very small amount of CGM was used to produce zein. 

Both laboratory- and pilot-plant-scale wet-milling processes can be used to 

evaluate the wet-milling characteristics of com, and the effect of processing 

techniques on product yield and quality (Watson et al. 1951; Anderson 1957,1963; 

EckhofF et al. 1993). A pilot-plant study is the process of choice when large samples 

of starch or other by-products are required for further study, or data is required to 

generate information needed for plant scale-up. The typical wet-milling pilot-plant 

process involves two grinding steps followed by starch/gluten separation with a 

starch table (Anderson 1957). Rubens (1990) described a pilot-plant wet-milling 

process which more closely parallels commercial milling operations. This process 

involves two grinding steps with germ removal after the first grind by hydroclones; 

starch/gluten separation is achieved with hydroclones and a disc-type centrifuge. 

For dent com, Rubens' process had a starch yield of 58.8% with 0.63% protein, and 

a gluten yield of 7.6% with 53.8% protein. 
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Since high starch recovery is the primary goal of wet milling, and most of the 

CGM is used as a high protein feed for poultry, there is less attention on the milling 

process to improve the quality of protein in the CGM. However, maize genotype 

and the severity of artificial drying affect gluten yield and protein quality. 

MacMasters and his coworkers (1959) reported that the protein content in gluten 

decreased, and starch recovery decreased as the com drying temperature 

increased from ambient temperature to 93.3 °C. The amounts of salt-soluble 

proteins and the proteins dissolved in 0.01 N KOH solution significantly decreased 

when com was dried at high temperature (93.3 or 143 °C) (McGuire and Earle 1958; 

Walletal. 1975). 

Commercially, gluten is thickened with a nozzle-bowl centrifuge, and 

dewatered by either a decanting centrifuge or a rotary drum filter. Gluten meal is 

then dried by flash, rotary, or steam heated tubular dryers (Blanchard 1992). Flash 

dryers process less material, have a relatively shorter dryer retention time (several 

seconds) and less thermal efficiency. Rotary dryers are relatively inexpensive and 

simple, but are cumbersome and difficult to control so that scorching of gluten is 

common. Steam tubular dryers are more efficient than flash dryers and less 

expensive. Therefore, the steam tubular systems have been the dryer of choice in 

recent years. Drying temperatures less than 400 °C are recommended to avoid a 

dark colored product, bumt particles, and offensive odor or haze In the dryer 

exhaust (May 1987). 
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Neumann et al. (1984) reported that wet CGM contained more saK-soluble 

proteins than does dried, but the amount of alcohol soluble proteins was only slightly 

different between wet and dried CGM obtained fi'om a large commercial plant. 

Since drying CGM has been shown to be an important ̂ ctor that influence CGM 

quality, the objectives of the research were: 1) to modKy a pilot-plant wet-milling 

process to obtain CGM in relatively high yield and protein content; and 2) to 

evaluate the influence of hybrid and drying process on CGM color. 

MATERIALS AND METHODS 

Maize 

Two varieties of yellow dent maize grown in 1994 were selected based on 

protein content and availability. One hybrid, Wilson D110, had 10.2% (db) protein, 

and the other hybrid. Pioneer 3394, had 8.6% (db). The harvested kemels were 

dried at ambient temperature in a bin with an air system to 13-14% moisture, and 

stored at 4.4 °C. 

Wet-Milling Procedure 

The pilot-plant design and procedure were based on the process design of 

Anderson and Rubens (Anderson 1957; Rubens 1990), with the goal of obtaining 

gluten with a higher protein content than is usually obtained in laboratory milling, 

and similar to what is achieved in commercial production. A 265-L conical bottom 
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steeping tank (Process/Storage System, Model 70-gallon JOVC, Charlevoix, Ml), 

with a hot water jacket system which controlled the temperature of the steepwater at 

48-50 °C, was used as the steep tank. Twenty kilograms of corn kemels were 

steeped in a 50-L solution containing 0.2% sulfur dioxide and 0.44% lactic acid for 

40 hr. Degermination was accomplished by first grinding in a Sprout-Bauer 0.35 m 

Dice Mill (Reliance Electric Co., Cleveland, OH) at 900 rpm, with a suitable plate 

gap based on kernel size, and a feed rate of 300 rpm. A continuous stream of 

distilled water at the rate of 5 l-/min was supplied to prevent clogging and reduce 

heat built-up. The specific gravity of the ground com was then adjusted to 1.04-1.05 

to facilitate germ floatation. The genns were separated by hand using a wire mesh 

screen and washed through a 60-mesh screen with three 3-liter portions of water. 

The wash water was transferred back to the degemninated slurry and a second 

grinding was carried out using a Stephan grinder (Stephan Food Processing 

Technology, Germany) with 0.005 and 0.02 mm knife gaps at 3200 rpm speed. 

After the second grind, the fiber was separated using a Kason Vibroscreen 

separator (Kason Corporation, Model K30-1-SS, Linden, NJ) with a 0.76 m 

diameter, 200-mesh stainless steel screen. The separated fiber was washed with 

150 L of fresh distilled water at a 5 L/min rate through the 200-mesh screen. The 

starch and gluten were separated from the remaining mill starch fraction by means 

of a starch table, 6.1 m long and 0.51 m wide with a slope of 0.54° (0.057 m pitch) 

for the entire length. The specific gravity of the mill starch sluny was adjusted to 
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1.04 using the fiber wash water and pumped onto the table at a rate of 1000 ml/min. 

The gluten fraction was collected in a bucket at the distal end of the table. About 35 

L of distilled water was used to wash the tabled starch and collected as the wash 

water fraction. The gluten collected from the table overflow was stored in a cooler (5 

°C) for future processing. 

The fiber and germ fractions were dried in a forced-air oven for 48 hr at 50 

°C. The starch was air dried on the table at room temperature with an air fan for 24 

hr, and then dried in a forced-air oven for 48 hr at 50 °C. 

Gluten Treatment 

The gluten slurry was allowed to settle by storing at 5 °0 ovemight (about 15 

hr), and concentrated to 60-80 L by siphoning off the supematant. The majority 

(80% by volume) of the slurry was dewatered using a vacuum drum filter (Filtration 

Engineers, East Moline, IL) with a belt covering the filter surfece (polypropylene, 3-8 

nm retention) for the purpose of building up the cake. The resulting gluten cake 

contained 53-60% moisture, and was divided into three parts and dried in a forced-

air oven at 50,100, and 150 °C until the moisture content of gluten was less than 

10%. 

The remaining (20%) gluten slurry was allowed to settle again and 

concentrated to a level of 1.8-2.0 % solids by siphoning off the supematant. One-

half of the concentrated slunry was dried using a spray drier and the other half with 
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a freeze drier. Spray-drying was performed with a Yamato Pulvis Mini-Spray 

(Yamato Scientific Co., Model GA-31, Tokyo, Japan) with an inlet temperature of 

120 °C, an outlet temperature of 60 °C, and 7.5-8 ml/min sample feed rate. Freeze 

drying was carried out using a Virtis Freeze Drier (Virtis Company, Inc., Model Ultra 

35 SL, Gardener, NY). A 50.8 x 30.5 x 2.5 cm  ̂stainless steel box filled one half 

deep with gluten slurry was prefrozen at -20.5 °C before it was placed into the 

freeze drier. Freeze drying was earned out at 80 milliton- vacuum and 25-27 °C 

shelf temperature for 72 hr. 

The milling procedure and gluten drying processes were replicated three 

times for each hybrid. All of the dried CGM was stored at 4 °C until use. 

Sample Analysis 

The initial moisture, starch, protein and oil contents of maize kemels were 

determined by a GAC III fixed-filter, near-infrared reflectance (NIR) analyzer 

(Dickey-John Corp., Auburn, IL). The starch, protein and oil data were reported on a 

dry basis (db). 

The wet milling fractions, dried gemn, fiber, starch, steepwater, starch wash 

water, and the first concentrated gluten slurry, were analyzed for proximate 

composition. Moisture contents of the wet-milling fractions were determined by 

drying a 2.00-g sample in a convection oven for 3 hr at 130 °C (AACC 1983, method 

44-15A). Crude fat was determined by using the Goldfisch method (AOAC 1984, 
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method 14-084 and 14>085). Protein contents were detemiined by measuring total 

nitrogen content using the Kjeidahl method and a protein conversion factor of 6.25 

(CRA 1986, method A-18). The yields of wet milling flections (starch, fiber, gluten, 

germ, steepwater solids, and wash water solids) were determined as the 

percentages of initial maize dry solids. The recovery of starch (or protein) was 

calculated as the ratio of the total weight of starch (or protein) recovered from wet 

milling to the total weight of starch (or protein) present in the com. 

The moisture content of the dried com gluten meal was detemiined by the 

Karl Fischer method (ASTM 1975, method E203-75). The color of the CGM 

samples was measured with the HunterLab Labscan (Hunter, VA). 

Statistical Analysis 

The general linear model and the test of least significant difference (LSD) at 

the 5% level were used to evaluate means. 

RESULTS AND DISCUSSION 

Yields and Recoveries of Wet-Milling Products 

Table I shows the proximate analysis data of the two selected hybrids used to 

produce CGM. The Wilson 0110 had higher protein and oil content, and lower 

starch content than did Pioneer 3394. 
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The starch yields of two hybrids were low (Table II), compared to the typical 

values of plant-scale (67.5%) (Johnson 1991) and lab-scale (59.2-65.1%) milling 

(Watson and Yahl 1967), but were similar to the pilot-plant results of Rubens (1990). 

Pioneer 3394 produced higher starch yield than did Wilson D110. This result was 

expected because of the high initial starch content in the Pioneer 3394 maize. The 

protein contents of the starch for both hybrids were less than 0.5%. Even though 

the protein contents were higher than 0.3%, typical values in commercial starch, the 

quality of starch produced in our procedure was better than Rubens (0.63%). 

Wilson D110 maize produced significantly higher (p<0.05) gluten yield with a 

significantly higher (p<0.05) protein content than did Pioneer 3394. These results 

were also anticipated because Wilson D110 maize had a higher protein content. 

The gluten yields and protein contents obtained by our pilot-plant procedure were 

similar to Rubens' results, in spite of the fact that Rubens' procedure used a 

hydrocyclone compared our starch table procedure to separate gluten and starch. 

The yield of our gluten was lower than previous laboratory studies using tabling as 

the separation method for starch and gluten (6.9-7.9%), but the protein content of 

gluten was higher than that reported (40.8-46.0%) (Watson and Yahl 1967; Eckhoff 

etal. 1993). 

Although the fiber yields of our process were close to the fiber yield of 

Rubens (1990), it was higher than the typical industrial values of 11.5% (Johnson 

1991). This was primarily due to the presence of starch in the fiber fraction. The 
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germ yield of our procedure was low, because germs, especially broken germs, 

were not easily skimmed out by hand. The residue from the broken germs in the 

second grind is believed to have caused the relatively high oil content in the Pioneer 

3394 gluten (11.0% db). The oil content in the gluten produced by an industrial wet-

milling plant is 7% db (Johnson, 1991). 

The steepwater yield of our process was lower than that of plant-scale (7.5%) 

(Johnson 1991) but higher than that of lab-scale (3.9-4.0%) wet-milling processes 

(Watson and Yahl 1967). Wilson D110 produced significantly higher steepwater 

yields than did Pioneer 3394. There was no significant difference in the protein 

contents of steepwater for both hybrids (34.5 and 34.7%); however, these results 

were lower than for plant-scale (46.0%) (Johnson 1991) and lab-scale (58.6-63.4%) 

(Watson and Yahl 1967) milling. The low protein loss in the steepwater may have 

contributed to the high protein content in the gluten. The wash water fraction was 

specifically produced for the production of a high quality starch and high protein 

content gluten. The yields of wash water were low, 0.4-0.6%, with a protein content 

of 7.7% for Pioneer 3394, and 14.5% for Wilson D110. Comparable data reported 

by Watson and Yahl (1967) had 6.7% yield and 13.4% of protein content for lab-

scale experiments. 
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Effect of Drying on CGM Color 

The colors of CGM dried with different drying methods were significantly 

different (Table III). As oven temperature increased, the L value (lightness) 

significantly decreased, and a value (positive a value = red color) significantly 

increased for both hybrids. From 50 to 100 "C, the L value decreased about 10 

units, and a value increased over 2 units; while increasing the drying temperature 

from 100 to 150 °C, the L value decreased about 3.5 units for Wilson CGM and 1.7 

units for Pioneer CGM, and a value increased by 0.7 and 0.4 units, respectively. 

The color change in CGM from 50 to 100 °C was much larger than from 100 to 150 

"C. The b value (positive b value = yellow color) also varied among treatments, but 

the variation in the b value was less than for the other two parameters. Compared 

to the oven drying, the freeze- and spray-dried CGMs were lighter and had a lower 

intensity of red color, because the CGM was subjected to less heat during freeze-

and spray-drying than in oven-drying. The spray-dried CGM was lighter and had 

lower red color than the freeze-dried CGM because it was subjected to less heat 

relative to freeze-drying. In spray-dryiny, the gluten was dried in only a few seconds 

at a temperature range of 120-60 °C, compared to 72 hr at 25-27 °C shelf 

temperature in the freeze dryer. The CGM from Pioneer 3394 was more red and 

yellow in color than the CGM of Wilson D110 because the hybrid Pioneer 3394 

maize kemels were more red and yellow than the Wilson D110. The higher crude 
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fat content with attendant pigments might also play a role in the darker color of 

Pioneer 3394 CGM. 

CONCLUSIONS 

The pilot-plant procedure successfully produced gluten with relatively high 

protein content compared to laboratory-scale milling. Maize hybrids with different 

initial protein content affect gluten yield and protein content of CGM. The color 

difference of CGM was contributed to the drying method and maize hybrid. As the 

temperature increases, the lightness of the CGM decreases and red color intensities 

increase. 
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Table I 
Proximate Compositions of Maize Hybrids 

Composition Pioneer 3394 Wilson D110 
Moisture (%) 14.0 13.9 
Starch (% db) 72.6 71.5 
Protein (% db) 8.6 10.2 
Oil (% db) 3.4 4.5 
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Table II 
Yields, Protein and Oil Contents and Recoveries of Wet-Milled Products  ̂

Product Pioneer 3394 Wilson D110 Rubens" 
Starch 

Yield (% db) 
Starch Recovery (%) 
Protein (% db) 
Protein Recovery (%) 
Oil (% db) 

60.4 ±0.7 
82.8 

0.49 ±0.10 
3.5 

0.06 ± 0.02 

57.9 ±2.0 
80.5 

0.46 ± 0.04 
2.6 

0.06 ± 0.05 

58.8 

0.63 

Gluten 
Yield (% db) 
Protein (% db) 
Protein Recovery (%) 
Oil (% db) 

6.0 ± 0.2 
49.8 ±1.0 

35.0 
11.0±1.7 

7.4 ± 0.2 
53.7 ±1.8 

39.0 
7.0 ± 0.8 

7.6 
53.8 

Fiber 
Yield (% db) 
Protein (% db) 
Protein Recovery (%) 
Oil (% db) 

21.5 ±3.2 
8.9 ± 0.2 
22.2 

3.0 ± 0.4 

18.6 ±1.5 
10.8 ±0.4 

19.7 
2.1 ±0.4 

21.8 

Germ 
Yield (% db) 
Protein (% db) 
Protein Recovery (%) 
Oil (% db) 

5.9 ±0.1 
12.6 ±0.1 

8.6 
36.0 ±1.4 

6.6 ± 0.4 
14.4 ± 0.4 

9.3 
47.0 ± 0.5 

10.5 

Steepwater 
Yield (% db) 
Protein (% db) 
Protein Recovery (%) 

4.4 ± 0.07 
34.7 ± 0.4 

17.8 

5.3 ± 0.2 
34.5 ±1.6 

17.8 

5.1 

Wash Water 
Yield (% db) 
Protein (% db) 
Protein Recovery (%) 

0.4 ± 0.09 
7.7 ±1.2 

0.36 

0.6 ± 0.03 
14.5 ±5.6 

0.80 

Total Solids Recovery (%) 98.6 ±3.37 96.3 ±0.18 
® All data are the means of three millings. 
"Rubens (1990). 
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Table ill 
Colors of Dried CGMs  ̂

CGM CoioP 
L a b 

Wilson D110 
Oven Drying, at 50 °C 74.35 a 2.32 a 23.41 a 

at 100 °C 64.14 b 4.74 b 24.48 be 
at 150 "C 60.65 c 5.46 c 24.70 bed 

Freeze Drying 77.82 d 1.88 d 24.91 d 
Spray Drying 78.69 d 1.15e 24.17 b 

Pioneer 3394 
Oven Drying, at 50 °C 66.94 e 6.40 f 26.02 e 

at 100 °C 59.57 fc 8.52 g 25.48 f 
at 150 «C 57.87 g 8.98 h 25.46 f 

Freeze Drying 76.31 h 4.00 i 27.09 g 
Spray Drying 77.78 hd 2.93 j 27.19 g 

® Means of three millings. 
 ̂Data in the same column with different letter are significantly different 
at p < 0.05. 
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5. EFFECTS OF MAIZE HYBRID AND MEAL DRYING CONDITIONS ON 
YIELD AND QUALITY OF EXTRACTED ZEIN 

A paper to be submitted to Cereal Chemistry 

Shaowen Wu\ Deland J. Myers^" ,̂ and Lawrence A. Johnson  ̂

ABSTRACT 

In this study, com gluten meals (CGM) produced from two maize hybrids and 

subjected to five drying treatments were used to determine their effects on zein 

extraction. Zein extraction yields, protein recoveries and purities were higher in 

CGM from maize with the higher protein content. The yield and protein recovery of 

zein decreased as the drying temperature increased. Zein yield, protein recovery 

and purity were significantly lower in the CGMs subjected to freeze- and spray-

drying than oven-drying. A relatively higher pH value in the CGM slumes, more a-

zeins with less polarity, and more a-zeins with pi 7.3 were characteristics of freeze-

and spray-dried CGMs. An explanation of these results based on the mechanisms 

of protein changes during drying is discussed. 
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INTRODUCTION 

Zein has been commercially extracted from com gluten meal (CGM), a co-

product of wet milling, since the 1940's (Swallen 1942). The current commercial 

process, based on the patent of Carter and Reck (1970), uses a hot isopropyi 

alcohol base solution to extract zein followed by chilling the extract to separate the 

zein from the solvent. However, high variation in the yield and quality has plagued 

the processors. Although there have been numerous studies on the technology of 

zein extraction such as altemative extraction solvents, changes in temperature, 

extraction time, and ratio of solvent to CGM (Swallen 1941; Evans et al. 1945; and 

Russell and Tsao 1982), studies investigating how CGM quality affects zein 

extraction yield and quality have not been published. 

Watson and Yahl (1967) showed that maize hybrid and severe artificial drying 

of the grain affect milling results, including CGM yield and quality. Extensive heat 

treatment may also cause chemical and physical changes to proteins and decrease 

their extractability. McGuire and Earle (1958) reported that the proteins extracted 

with water, 5% salt solution, and 0.01 N KOH solution decreased significantly 

(P<0.05) when the drying temperature of the com kemels increased firom 48.9 to 

93.3 °C. The nitrogen content of the extract obtained with 60% ethanol at 79.4 °C 

was no different from that of the air-dried sample and the sample dried at 93.3 °C. 

There was also no indication of critical damage occurring at any particular 

temperature (ambient to 93.3 °C) of com drying. Watson and Hirata (1962) 
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observed that the soluble protein contents of steepwater filtrate and ground steeped 

grain decreased when the drying temperature of com kernels increased from 60 to 

93.3 °C. Wall and co-workers (1975) reported that a substantial decrease in salt-

soluble proteins and a small decrease in alcohol-soluble proteins occurred when 

whole com was dried from 25 to 15% moisture at 143 °C. They also observed 

decreased sulfhydral contents with increasing temperature. They indicated that an 

extensive heat treatment of native whole com denatured protein and caused 

molecular aggregation through noncovalent hydrophobic interaction and covalent 

disulfide cross-links contributing to protein insolubility. Weller et al. (1987) observed 

a severe decrease of ethanol-soluble protein occurred when high harvest moisture 

com (30% moisture) was dried from 50 to 71 °C. They hypothesized that the 

solubility loss was most likely due to chain unfolding and the fonnation of new 

intermolecular disulfide bonds within endosperm protein. 

Neumann and his co-workers (1984) compared the proteins extracted from 

commercial wet and dried CGM. They found that the yields of alcohol-soluble 

proteins were higher from CGM than from native com. They indicated that SO2 

added in the steepwater cleaved protein disulfide bonds of com proteins during 

steeping, and increased zein extractability. Wet CGM contained more salt-soluble 

protein than did dried CGM, but the amount of alcohol-soluble protein was only 

slightly higher in wet than dried CGM. About 50% of cysteine-cystine in the 

commercial CGM was present in the cysteine or disulfide form; the remaining 50% 
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was in the S-sulfocysteine fonn which is stable at neutral and mildly acidic pH, and 

does not readily decompose during commercial drying. About 5-10% of the cysteine 

of the total cysteine-cystine content was present in the wet CGM, but no cysteine 

was found in commercial dried CGM. Therefore, they indicated that the absence of 

cysteine and large amount of cystine in the dried CGM must be due to the 

quantitative oxidation of sulfhydrals to disulfide bonds during heating. 

The objectives of the present study were to: 1) detemiine the influence of 

drying temperature and drying method on the yield and purity of extracted zein; 2) 

investigate the effects of the maize hybrid on the zein yield and purity; and 3) 

evaluate the changes of proteins in the CGMs after wet milling and drying. 

MATERIALS AND METHODS 

Preparation of Com Gluten Meal and Com Endospenn Meal 

CGM was produced from two maize hybrids, Pioneer 3394 and Wilson D110, 

by using a pilot-plant wet-milling process (Wu et al. 1995a). CGM was dried using 

three different methods, oven-, freeze- and spray-drying. The forced-air oven drying 

was carried out at 50,100, and 150 °C. All of the CGMs were stored at 4 °C. 

Com endosperm meal was produced by first soaking com kemels in 

deionized water at 50 °C ovemight. After the pericarp and germ were removed by 

hand, the softened endosperm was ground by a mortar-pestle. The endosperm 

meal was dried at room temperature (rt) under the hood, passed through a 35-mesh 
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was measured by the Karl Fischer (Fisher Scientific, Model 392, Pittsburgh, PA) 

method (ASTM 1975, method E203-75). 

Zein Extraction 

Zein was extracted from CGM using hot aqueous isopropanol extraction and 

low temperature separation (Carter and Reck 1970; Wu et al. 1995b), except that 

the ratio of CGM to solvent was changed from 1:4 to 1:6. Zein yield was calculated 

as the percentage of the initial CGM weight calculated on a dry basis (db). Protein 

recovery was calculated as the ratio of the protein content in the extracted zein to 

the protein content in the CGM (db). Protein purity was calculated as the protein 

content in the extracted zein; the Kjeldahl (Tecator, Sweden) method (CRA 1986, 

method A-18) was used to measure total nitrogen content, and the protein content 

was estimated based on total nitrogen content using the conversion factor 6.25. 

Separation of Protein Fractions 

CGM samples (0.40 g) and com endosperm powder (2.0 g) were extracted 

with 10 ml and 20 ml, respectively, of 0.5 M NaCI solution for 20 min (rt). After 

centrifugation for 15 min at 15,000 x g in an Beckman Model J2-21 centrifuge (Palo 

Alto, CA), the supematant was collected. The extraction was repeated once, and 

the supematants were combined for protein analysis. The residues were extracted 
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with 10 ml (CGM) or 20 ml (com endosperm powder) of 55% (v/v) isopropyl alcohol 

and 5% (mN) 2-mercaptoethanol plus 0.5% (w/v) sodium acetate (PMA). The 

mixture was shaken for 2 hr (rt) at 130 rpm, and centrifuged at 15,000 x g for 10 

min. The supernatant was collected. The aforementioned extraction with PMA was 

repeated once. The residue was then washed with 5 ml (CGM) or 10 ml (com 

endosperm powder) PMA, and centrifuged. Ail of the extracted supematants and 

wash solutions were collected and analyzed for protein contents. Protein was 

measured by the Kjeldahl and the protein conversion factor of 6.25. 

HPLC Analysis 

Samples for high performance liquid chromatography (HPLC) analysis were 

prepared by the extraction of com endosperm powder (1.25 g) and CGM (0.30 g) 

with 5 ml PMA for 2 hr (rt). The supernatant was diluted 10 times with 55% (v/v) 

isopropyl alcohol and 5% (v/v) 2-mercaptoethanol (PM) solvent before injection. 

Zein (30 mg) was dissolved in 1 ml PMA, and diluted 10 times before injection. 

The reverse phase HPLC analysis used an HP-1050 HPLC system with an 

automatic sample injector, gradient solvent delivery system, oven heater, a Diode-

Anray detector and a 486 computer with a Chemstation program. A Vydac 

(Hesperia, CA) Ci8 column (25 cm x 4.6 mm, 5-nm particle size, 300 A pore size) 

was used to analyze the samples (Dombrink-Kurtzman and Bietz, 1993). Zein 

separation was performed using nonlinear gradients of increasing acetonitrile (ACN) 
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ACN, increasing to 50% ACN at 20 min (at a rate of 1.00%/min), then to 56% ACN 

after 35 min (0.17%/min), ending at 64% ACN after 5 min (5.8%/min). The column 

was operated at 55 and a flowrate of 1.0 ml/min. The 20-̂ 1 sample (about 20-30 

^g protein) was injected for analysis. The eluate was monitored at 214 and 280 nm 

on the Diode-Array detector. 

Isoelectric Focusing 

Isoelectric focusing (lEF) was performed using the model 111 mini lEF cell 

(Bio-Rad, Richmond, CA). An ultra-thin polyacrylamide gel (125x65x0.4 mm) was 

used to separate zeins. The gel contained 5% polyacrylamide. 1% ampholine in the 

pH range of 5-7,1% ampholine in the 7-9 pH range, and 6M urea (Righetti et al., 

1977). The samples were dissolved in a 6M urea buffer with a final concentration of 

20 mg/ml (Wilson, 1984). The lEF was run for 90 min, and the gel was stained with 

Coomassie blue G-250 following the Bio-Rad instruction manual. 

Protein Deannidation and NH3 Determination 

Deamidation of CGM protein was conducted in a 25x150 mm test tube with a 

rubber stopper. A glass tube that was inserted into the test tube at about 2 cm 

away from the bottom was connected to a high purity helium tank (99.99%), and 

another glass tube that passed through the rubber stopper was connected to a 
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collection tube. Before the reaction, the CGM sample (1.00 g) was thoroughly 

mixed with a preweighed amount of deionized distilled water to reach 30% (wAv) 

moisture content. The reaction tube was then heated in a bath at a constant 

temperature of 110 °C for 2.5 hr. Helium gas (100 ml/min) was passed through the 

reaction tube during heating, and canied released NH3 to the collection tube 

containing 10 ml IN HCI solution. The 5 ml aliquots of HCI was diluted to 10 ml with 

deionized distilled water before being analyzed for ammonia by an ammonia 

electrode (Orion Research Inc., Boston, MA). A reference curve was prepared 

using standard ammonium chloride solutions with a range of 10 ppm to 10'̂  ppm. 

Deamidation was replicated three times for each CGM samples. 

pH of CGM Slurry 

The pH of the CGM slurry was detennined with an lonalyzer Model 501 

(Orion Research Incorporated, Boston, MA) after stirring 10 g of CGM in 20 ml of 

deionized water for 10 min. The deionized water was boiled to remove CO2 before 

the analysis. 

Statistical Analysis 

Statistical analysis was carried out using a randomized complete block 

design. Three millings were three blocks. CGM drying treatments were a factorial 

combination of hybrid and treatment (2x5). The general linear model and the test of 
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difference between means. 

RESULTS AND DISCUSSION 

Influence of CGM Drying Temperature on Zein Extraction 

Zein extraction yields from CGM dried in the forced-air oven at different 

temperatures ranged from 17.1-21.5% for Wilson D110 and 16.8-17.8% for Pioneer 

3394 (Table 1). The yield was significantly higher from the Wilson D110 CGM dried 

at 50 °C than those dried at 100 and 150 °C. The zein extraction yield of Pioneer 

3394 also decreased as the oven drying temperature increased, although the 

changes were not significantly different at p<0.05. The fact that higher zein yield 

was obtained at 50 °C indicates that protein was less aggregated during drying. 

Zein extraction yield was affected by the genotype of the maize. The yields 

of zein extracted from Wilson D110 was higher than from Pioneer 3394 at the same 

temperatures, although there were no significant differences between the yields 

extracted from the CGM dried at 150 °C. The results also show that there was an 

interaction between hybrids and drying temperature. High temperature treatment 

not only decreased zein extractability, but also decreased the difference caused by 

maize genotype. 

Protein recoveries showed similar trends as did yield (Table II). Protein 

recovery from CGM dried at 50 °C was significantly higher than those dried at 100 
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drying treatments for protein recovery. The hybrid influence on protein recovery was 

significantly different at 50 °C, but not at higher drying temperatures. 

Protein fraction analysis showed that hybrid means were significantly different 

in total protein, extractable albumin and globulin, and zein contents in oven-dried 

CGM (Table III). The oven-dried CGM of Wilson D110 had higher total protein, 

extractable albumin and globulin, and zein contents than those of Pioneer 3394. 

The higher original extractable zein content in the CGM can account for the higher 

extraction yield and protein recovery. There were no significant differences for the 

total protein, and albumin and globulin contents at different oven-drying 

temperature, however, the zein content of CGM dried at 150 °C was significantly 

lower than the CGM dried at 50 and 100 °C. The reason for the lower zein content 

in the CGM dried at 150 "C may be due to zein aggregation during drying, fomriing 

a large insoluble polymer which contributed to zein insolubility. Therefore, the 

extraction yields and protein recoveries were the lowest in the CGM dried at 150 °C. 

The interaction of hybrid and temperature may indicate that the zein aggregation in 

the high protein content CGM is more sensitive to temperature change than the zein 

in the low protein content CGM. 

Protein purity of the extracted zein significantly decreased as the drying 

temperature increased from 50 to 150 °C (p<0.05) (Table IV), and the mean of 50 

°C treatment exceeds the means of the 100 and 150 °C treatments by 3.1 % and 
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Pioneer 3394 (p<0.05), and the mean difference between the hybrids was 8.1% in 

oven drying. The low purity may be explained by the presence of other alcohol-

soluble compounds, such as oil, in the CGM. Since the CGM of Pioneer 3394 

contained more oil than did the CGM of Wilson D110 (Wu et al. 1995a), this could 

explain why the protein purity values for Pioneer 3394 were low. Zein binding with 

other components, such as oil (Izzo and Ho 1989) or products of the Maillard 

reaction, at high temperature may be another reason. 

HPLC analysis of a-, P-, and y-zeins in com endosperm meal and CGM 

indicated that wet milling decreased the p- and y-zein contents. The p- and y-zein 

contents of Wilson D110 endospenn meal were 3.34 and 19.73%, respectively, of 

the total zein content, and the values decreased to 0.83 and 5.67%, respectively, of 

the total zein content in the wet gluten. The p- and y-zein contents of Pioneer 3394 

also decreased from 5.49 and 21.25% in the endospenn meal to the 1.72 and 

10.41%, respectively, in the wet gluten. Hybrid differences also affect a-, p-, and y-

zeins contents. Since the calculations of a-, p-, and y-zeins were on a percentage 

basis, Wilson D110 had lower extractable p-, and y-zein contents than Pioneer 

3394; therefore, higher a-zein content than Pioneer 3394 (Table V). Drying 

temperature did not significantly affect the extractable p- and y-zein contents, but the 

extractable a-zein content was significantly different in the CGM dried at 50 and 150 

°C (Table V). Since only a-zeins were extracted from CGM with the extraction 



www.manaraa.com

95 

procedure in this study, the relatively low total extractable a-zeins would produce 

low extraction yield and protein recovery. 

In the ideal situation, the amount of extracted protein should equal the 

extractable a-zein content in the CGM, i.e. a-zein recovery equals 100%. The a-

zein recoveries for Wilson D110 CGM were 51.3, 42.0, and 42.3% for the 50,100 

and 150 °C treatments, respectively (Table VI), and for the Pioneer 3394 CGM were 

52.3,49.5 and 50.5% for the 50,100, and 150 °C treatments, respectively. The low 

a-zein recovery values may result from the fonnation of cross-linking disulfide bonds 

in some a-zeins during heating. The amount of SO2 used in the wet milling steeping 

process should have cleaved the disulfide bonds among the zeins and converted 

them to cysteine and S-sutfocysteine residues. The S-sulfocysteine residues are 

stable in neutral and mildly acidic conditions without degradation under the 

commercial drying conditions (Neumann et al. 1984). However, the cysteine 

residues can reform disulfide bonds in the presence of oxygen during heating. Wall 

et al. (1975) observed a significant decrease in sulfhydral content in com when the 

temperature increased fix)m 15 to 143 °C, and Neumann et al. (1984) also reported 

that CGM proteins formed disulfide bonds during commercial drying. Therefore, as 

drying temperature increases, more disulfide bonds reform. The a-zeins with S-

sulfocysteine residues can be extracted as monomers or oligomers by an alcohol 

aqueous, but cross-linked zeins cannot be easily extracted. Since Wilson D110 

CGM contained more protein than Pioneer 3394 CGM, the same amount SO2 or 
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steeping time may not have been sufficient to cleave all the disulfide bonds. 

Therefore, the a-zein recovery values of Wilson D110 CGM w/ere lower than the 

Pioneer 3394. The major oxidation reaction of cysteine residues seems to occur in 

the temperature range 50 to 100 °C, because the a-zein recovery values decreased 

significantly in this temperature range. 

Influence of CGM Drying Method on Zein Extraction Yield 

Comparing drying methods for Wilson D110 CGM, the yield, protein recovery, 

and protein purity of zein extracted from freeze- and spray-dried CGMs had similar 

values that were not significantly different from the values of oven drying at 150 °C, 

but were much lower than those of the oven dried at 50 "C (p<0.05) (Table I, II, and 

IV). Zein extracted from Pioneer 3394 CGM had a similar trend, but extraction 

yields and protein recoveries from freeze- and spray-dried CGMs were much lower 

than those of all the oven drying treatments. Hybrid effects were significant (p<0.05) 

on yield, protein recovery, and protein purity in the freeze- and spray-drying 

treatments. Drying method influenced zein extraction more for Pioneer 3394 than 

for Wilson D110. 

Total protein contents of the freeze- and spray-dried CGMs were slightly 

lower but not significantly different from those from oven-dried CGM (Table III). 

However, the content of extractable albumin and globulin was about 60% higher in 

the spray-dried, and approximately twice as high in the freeze-dried CGM compared 
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to oven-dried. One reason for the higher amounts of water- and salt-soluble 

proteins in the freeze- and spray-dried CGMs was the difference in the collection of 

the CGM prior to the drying. Gluten used for oven drying was dewatered using a 

vacuum drum filter, while the gluten used for freeze- and spray-drying treatments 

was concentrated by siphoning free liquid after setting. The solids content in the 

wet gluten for oven drying was 40-46%, but was only 1.8-2.0% in the gluten slunry 

used for freeze and spray drying. Therefore, the CGM dried from the gluten slurry 

contained more water-soluble compounds, including water- and salt-soluble 

peptides and proteins, sugars, organic acids, etc.. However, a more important 

reason for the high amount of water- and salt-soluble proteins may be that there 

was less oxidation of cysteine in the freeze- and spray-drying process, and less 

disulfide bond formation among proteins will maricedly increase the extractability of 

the water- and salt-soluble proteins. The zein contents of the freeze- and spray-

dried CGMs were not significantly different from oven drying at 50 and 100 °C. 

The relative ratios of a-, p-, and y-zeins in the freeze- and spray-dried CGMs 

were significantly different from those in oven-dried CGM (Table V). The p-, and y-

zein contents were higher in the freeze- and spray-dried CGMs than those in the 

oven-dried CGM. Because of the cysteine contents of the y- and p-zeins (Shewry 

and Tatham 1990), y- and p-zeins can forni disulfide bonds easier as temperature 

increases compared to a-zeins. The less heat treated and shorter oxygen exposure 

time gave less opportunity for disulfide bond formation in p- and y-zeins; therefore. 
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the freeze- and spray-dried CGMs contained relatively high p- and y-zeins, and low 

a-zeins. 

The a-zein recovery values for Wilson D110 CGM were 38.4 and 38.7% for 

the freeze- and spray-drying treatments, respectively (Table VI), and 28.2 and 

30.4% for the freeze- and spray-drying treatments for Pioneer 3394. The a-zein 

recoveries of the freeze- and spray-drying treatments were much lower than that of 

the oven-drying treatment, even lower than that of 150 °C treatment: however, the 

extractable a-zein contents were not significantly lower in the freeze- and spray-

dried CGMs than the oven-dried CGMs treated at 50 and 100 °C, and also 

significantly higher than that of 150 °C oven treatment (Table III). 

Low yield, protein recovery, and a-zein recovery are theoretically the result of 

the unavailability of some a-zeins in the freeze- and spray-dried CGMs. Wall and 

coworkers (1984) indicated that noncovalent hydrophobic interactions and covalent 

disulfide bonds were two Actors that denature protein and cause molecular 

aggregation in zein. The high extractable albumin and globulin amounts, and the 

relatively high extractable p- and y-zein content in the freeze- and spray-dried CGMs 

demonstrated there was less cross-link formation among proteins. Therefore, the 

hydrophobic interactions between proteins may be a major reason for the 

unavailability of a-zeins in the freeze- and spray-dried CGMs. Since a-zein contain 
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about 20% glutamic acid/glutamine residues and 90% of this residue is present as 

glutamine (Righetti etal. 1977), a-zein deamidation during oven heating is possible. 

Zhang et al. (1993a) measured the percentage of thermal deamidation in soy 

protein, casein, lysozyme and gliadin when the proteins were heated at 115°C for 2 

hr in a water-limited environment. They reported that gliadin, not like other proteins, 

had a maximum deamidation (about 8%) at a moisture content of less than 10%, 

because it contains about 30% glutamine. The deamidation at acidic conditions (pH 

3) was believed to be via a direct hydrolysis pathway, and the primary protein 

sequence did not affect the deamidation rate (Zhang et al. 1993b). Deamidation 

was accelarated by increased pH and the presence of anions, such as phosphate, 

bicarbonate (Shih 1990), chlorate, and sulfate (Shih and Kalmar 1987). The 

ammonia released from the amide could play an important role in the non-enzymatic 

browning reaction. More available amide in protein results in more maillard reaction 

(Izzoand Ho 1993). 

Deamidation in acidic conditions removes amides fi'om protein, generates 

acidic side chains, and increases the charge density on proteins. Protein 

conformation also changes during deamidation by increasing electrostatic repulsion 

and decreasing hydrogen bonding (Matsudomi et al. 1982). Changes of charge 

density and protein conformation led to protein unfolding and, thus, enhanced 

protein solubility (Matsudomi et al. 1981). Deamidation of zein increased solubility 

(Casella and Whitaker 1990). Since more heat was used in oven-dried CGMs, more 
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deamidation of protein could occur in the oven-dried CGMs; therefore, more zein in 

the oven-dried CGMs could dissolve in the extraction solvent and higher extraction 

yield and protein recovery were obtained from oven-dried CGMs than from freeze-

and spray-dried CGM. 

The data of ammonia released from deamidation of CGM protein proved our 

hypothesis (Table VIII). The fact that the highest amount of ammonia was released 

from freeze-dried CGM indicated that the lowest level of deamidation occurred 

during freeze drying. The NHs/protein value obtained from spray-dried CGM was 

significantly lower than that from freeze-dried, but significantly higher than that of 

oven-dried. The lowest NHa/protein value obtained from the oven-dried CGM 

samples at 50 °C also demonstrated that heat-treating CGM for a long time caused 

more deamidation of glutamine; there was almost four times more deamidation than 

the fi'eeze-dried CGM. Both hybrids, Wilson D110 and Pioneer 3394, had a similar 

trend of deamidation for the different drying treatments. 

The pH of the CGM slurry slightly Increased as the oven temperature 

increased from 50 to 150 °C (Table VII). The change was greater in the Wilson 

D110 hybrid than the Pioneer 3394 hybrid. The pH values of freeze- and spray-

dried CGM slurries were not significantly different, but significantly higher than the 

pH values of oven-dried CGM slurries. The difference of CGM slurry pH was 

caused by protein changes during drying. Disulfide bond formation will increase the 

slurry pH value, and deamidation of glutamine during the heat will decrease the 
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slurry pH value. Non-enzymatic browning not only decreases the availability of 

proteins, especially in non-zein proteins, but also decreases ammonia released from 

deamidation, thus decreasing the pH of the CGM slurry. These factors reduced the 

pHs of oven-dried CGM slum'es to lower values than those of the freeze- and spray-

dried slurries, as well as the high-temperature-dried CGM. 

Characteristics of Zein Extracted from CGMs Dried Differently 

The HPLC chromatograms revealed that wet milling and the zein extraction 

process do not alter the peak patterns of a-zeins. Hybrids have been identified to 

be the cause for differences in a-zein pattems (Figs.1 and 2). The chromatograms 

of zeins extracted from CGMs showed no major differences appeared in peak 

pattems among the drying methods (Figs. 3 and 4). However, the abundance of 

individual peaks from the oven-dried CGM compared to the freeze-dried CGM 

shows a peak height decrease at earlier retention times accompanied with an 

increase peak height in the later retention times. The phenomenon of a-zein peaks 

shift from earlier to the later retention time in the freeze- and spray-dried zeins is 

more distinct in the chromatograms of Pioneer 3394. Since reverse phase HPLC 

was used, the peaks eluting late are more hydrophobic than the eariy peaks. 

Therefore, HPLC showed that more hydrophobic a-zeins were extracted from less 

heat-treated CGMs. 
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The lEF pattern of zein showed there were no large differences between the 

oven-drying treatments; however, the distribution of zein bands from the freeze-

drying treatment differed from those of the oven-drying treatments. There was a 

strong band at pi 7.3 in zein from the freeze-dried treatment, while the band pi 6.9 

was relatively weak, when compared with the zein pattern from the oven-dried 

treatments for both hybrids (Figs. 5 and 6). Zein from the spray-dried treatment 

showed a similar band pattem as the sample from the freeze-dried treatment. A 

possible explanation for the stronger band pi 7.3 and weaker band pi 6.9 is 

deamidation of the glutamine in the acidic condition and heat treatment. 

CONCLUSIONS 

Ten CGM samples (two hybrids x five drying treatments) were used to study 

the factors influencing zein extraction. Zein extraction yield, protein recovery, and 

protein purity were higher in the CGM obtained from maize high in protein content 

than from maize low in protein content. The yield, protein recovery, and protein 

purity increased as the oven drying temperature decreased. Protein aggregation by 

formation of disulfide bonds at high temperature likely occurred. 

The explanation for the influence of different drying method on zein extraction 

is more complex. The freeze- and spray-dried CGM produced lower zein yields, 

protein recoveries, and protein purities than those obtained for the oven-dried 

CGMs. Besides the CGM collection and drying process being different, protein 
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change during drying was a major factor influencing the yield and protein recovery. 

The CGM treated with low heat (low temperature or short time) had relatively high 

pH values in the slurries, and more hydrophobic a-zeins and more a-zeins appeared 

at the pi 7.3 band rather than in the pi 6.9. These characteristics of a-zeins in the 

freeze- and spray-dried CGMs are due to less deamidation during drying. The 

aggregation of proteins with noncovalent interaction decreases the extractability of 

a-zeins, and could also have a major influence on zein extraction yield and purity. 
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Table i 

Zein Extraction Yield (% of Initial Weight, db) of CGM 
Dried Under Different Conditions  ̂

Treatment 
Hybrid Oven Drying Freeze Spray 

50 °C 100 °C 150 °C Drying Drying 
Wilson D110 21.5 aA 18.2 bA 17.1 bcA 16.4 cA 16.4 cA 

Pioneer 3394 17.8 as 17.2 aB 16.8 aA 10.4 bB 11.5 CB 

 ̂ Means of nine replications. Data in the same row with different lower case 
letters were significantly different at p< 0.05. Data in the same column with 
different capital letters were significantly different at p< 0.05. 

Table II 

Protein Recovery (%) of Zein Extracted from CGM 
Dried Under Different Conditions  ̂

Treatment 
Hybrid Oven Drying Freeze Spray 

50 °C 100 °C 150 °C Drying Drying 
Wilson D110 32.1 aA 26.0 bA 24.1 bA 24.4 bA 24.8 bA 

Pioneer 3394 27.5 aB 25.7 bA 24.2 bA 14.2 CB 15.7 CB 

 ̂ Means of nine replications. Data in the same row with different lower case 
letters were significantly different at p< 0.05. Data in the same column with 
different capital letters were significantly different at p< 0.05. 
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Table III 

Protein Composition (db) in CGM Dried Under Different Conditions" 

Treatment Hybrid 
Components Oven Drying Freeze Spray Means'" 

50 °C 100 °C 150 °C Drying Drying 
CGM Protein (%) 

Wilson D110 56.6 ±1.3 56.5 ±1.2 56.5 ±1.0 54.3 ±1.1 53.9 ±2.6 65.6 a 

Pioneer 3394 49.1 ± 2.8 49.2 ± 3.3 49.1 +2.9 49.1 ± 2.0 48.6 ±3.3 49.0 b 

Treatment Means® 52.8 a 52.9 a 52.8 a 51.7 a 51.3 a 

Extractable Alb+Glo (%) 

WilsonDIIO 1.3±0.2 1.2 + 0.3 1.4±0.2 2.3±0.5 1.7 + 0.4 1.6a 

Pioneer 3394 0.8 + 0.2 0.8 ±0.1 0.7 ±0.2 1.9 ±0.1 1.6 ±0.6 1.2 b 

Treatment Means'" 1.1a 1.0 a 1.1a 2.1b 1.7 c 

Extractable Zein (%) 

WilsonDIIO 37.8 + 0.9 37.4 ±0.9 34.5 ±0.8 37.3 ±1.0 37.4 ±0.5 36.9 a 

Pioneer 3394 29.5 ± 1.5 29.3 ± 1.4 26.9 ±0.4 28.5 ±0.8 28.9 ±1.0 28.7 b 

Treatment Means® 33.7 a 33.4 a 30.7 b 32.9 a 33.3 a 

' Means of six replications. 
Data in the same column with different letters were significantly different at p < 0.05. 

® Data in the same row with different letters were significantly different at p < 0.05. 
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Table IV 

Protein Purity (%) of Zein Extracted from CGM 
Dried Under Different Conditions  ̂

Treatment Hybrid 
Hybrid Oven Drying Freeze Spray Means'* 

50 °C 100 "C 150 "C Drying Drying 
Wilson D110 84.4 80.5 79.5 80.4 81.5 81.3a 

Pioneer 3394 76.0 73.7 70,6 66.7 66.1 70.6b 

Treatment Means" 80.2 a 77.1 b 75.0 c 73.5 c 73.8 c 

 ̂Means of nine replications. 
Data in the same column with different letters were significantly different at p < 0.05. 
Data in the same row with different letters were significantly different at p < 0.05. 
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Table V 

Extractable Zein Composition (%) in CGM Dried Under Different Conditions" 

Treatment Hybrid 
Components Oven Drying Freeze Spray Means'' 

50 °C 100 °C 150 °C Drying Drying 
a-Zein (%) 

Wilson D110 93.6 ±0.2 93.3 ±0.2 93.2 ±0.3 92.2 ±0.3 92.3 ±0.3 92.9 a 

Pioneer 3394 87.7 ±0.3 87.5 ±0.2 87.3 ±0.1 86.4 ±0.1 86.6 ±0.3 87.1 b 

Treatment Means° 90.6 a 90.4 ab 90.2 b 89.3 c 89.5 c 

p-Zein (%) 

Wilson D110 1.07 ±0.02 1.07 ±0.01 1.12 ±0.03 1.12 ±0.03 1.18 ±0.01 1.11a 

Pioneer 3394 2.49 ± 0.34 2.59 ± 0.26 2.65 ± 0.38 2.91 ±0.31 2.77 ±0.35 2.68 b 

Treatment Means® 1.78 a 1.83 ab 1.89 ab 2.02 b 1.98 ab 

y-Zein (%) 

Wilson D110 5.35 ± 0.21 5.66 ± 0.23 5.71 ± 0.27 6.64 ± 0.37 6.48 ± 0.34 5.97 a 

Pioneer 3394 9.80 ± 0.13 9.96 ± 0.29 10.03 ±0.35 10.65 ±0.34 10.61 ±0.41 10.21b 

Treatment Means" 7.58 a 7.81a 7.87 a 8.64 b 8.55 b 

 ̂Means of six replications. 
Data in the same column with different letters were significantly different at p < 0.05. 
Data in the same row with different letters were significantly different at p < 0.05. 
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Table VI 

a-Zein Recovery (%) in CGM Dried Under Different Conditions® 

Treatment 
Hybrid Oven Drying Freeze Spray 

50 °C 100 "C 150 °C Drying Drying 
Wilson D110 51.3 42.0 42.3 38.4 38.7 

Pioneer 3394 52.3 40.5 50.5 28.2 30.4 

° Means of three millings. 

Table VII 

pH of CGM slurry® 

Treatment 
Hybrid Oven Drying Freeze Spray 

50 °C 100 "C 150 °C Drying Drying 
Wilson D110 4.08 a 4.15 b 4.19 c 4.31 d 4.37 d 

Pioneer 3394 4.15 a 4.20 b 4.20 b 4.29 c 4.35 c 

 ̂ Means of three millings. Data in the same row with different letters were 
significantly different at p < 0.05. 
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Table VIII 

Ammonia Released in Deamidation Process  ̂

CGM NH3/Protein (mg/g) 
Wilson DUG 
Oven drying, at 50 °C 0.0031 e 

at 100 °C 0.0042 d 
at 150 °C 0.0041 d 

Freeze Drying 0.0157 a 
Spray Drying 0.0062 c 

Poineer 3394 
Oven drying, at 50 °C 0.0036 d.e 

at 100 °C 0.0048 d 
at150"'C 0.0048 d 

Freeze Drying 0.0125 b 
Spray Drying 0.0060 c 

' Means of three replications. Data in the same row with 
different letters were significantly different at p < 0.05. 
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1. RP-HPLC analysis of alcohol-soluble proteins from Wilson D110 corn (A), 
CGM (B), and extracted zein (C). Total zeins were extracted or dissolved 
with a solvent containing 55% (v/v) isopropyl alcohol with 5% (v/v) 2-
mercaptoethanol plus 0.5% (w/v) NaAc. Zeins were separated using a Cia 
column and a non-linear acetonitrile gradient from 30 to 64%. The proteins 
were monitored at 214 nm. The Greek letters, a, p, y, and 5, refer to zein 
classes. 
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Fig. 2. RP-HPLC analysis of alcohol-soluble proteins from hybrid Pioneer 3394 
com (A), CGM (B). and extracted zein (C). Total zeins were extracted or 
dissolved in a solvent containing 55% (v/v) isopropyl alcohol with 5% (v/v) 2-
mercaptoethanol plus 0.5% (w/v) NaAc. Zeins were separated using a Ci8 
column and a non-linear acetonitrile gradient from 30 to 64%. The proteins 
were monitored at 214 nm. The Greek letters, a, p, y, and 5, refer to zein 
classes. 
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mMI-

Fig. 3. RP-HPLC analysis of alcohol-soluble proteins from the zein extracted from 
hybrid Wilson D110 CGM dried at oven 150 °C (A); CGM dried at oven 100 
°C (B); CGM dried at oven 50 °C (C); spray-dried CGM (D); and freeze-
dried CGM (E). Zeins were dissolved in a solvent containing 55% (v/v) 
isopropyl alcohol with 5% (v/v) 2-mercaptoethanol. Zeins were separated 
on a Ci8 column and using a non-linear acetonitrlle gradient from 30 to 64%. 
The proteins were monitored at 214 nm. 
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Fig. 4. RP-HPLC analysis of alcohol-soluble proteins from the zein extracted from 
hybrid Pioneer 3394 CGM dried at oven 150 °C (A); CGM dried at oven 100 
®C (B); CGM dried at oven 50 °C (C); spray-dried CGM (D); and freeze-
dried CGM (E). Zeins were dissolved in 55% (v/v) isopropyl alcohol with 
5% (v/v) 2-mercaptoethanol. Zeins were separated on a Cis column and 
using a non-linear acetonitrile gradient from 30 to 64%. The proteins were 
monitored at 214 nm. 
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Fig. 5. Isoelectric focusing of hybrid Wilson D110 zeins in 5% polyacrylamide gel, 
1% ampholine pH 5-7, 1% ampholine pH 7-9, and 6M urea. Lane 1, pi 
marker proteins; lanes 2 to 6 (respectively): zeins extracted from corn 
gluten meals dried in oven at 50 °C, in oven at 100 °C, in oven at 150 °C, 
in the freeze drier, and in the spray drier. 
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Fig. 6. isoelectric focusing of hybrid Pioneer 3394 zeins in 5% polyacryiamide gel, 
1% ampholine pH 5-7, 1% ampholine pH7-9, and 6M urea. Lane 1, pi 
marker proteins; lanes 2 to 6 (respectively): zeins extracted from corn 
gluten meals dried in oven at 50 °C, in oven at 100 °C, in oven at 150 °C, 
in the freeze drier, and in the spray drier. 
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6. INFLUENCE OF PHOSPHATE BUFFER ON YIELD AND RECOVERY 
OF ZEIN EXTRACTED FROM CORN GLUTEN MEAL 

A paper to be submitted to Cereal Chemistry 

Shaowen Wu\ Deland J. Myers '̂̂  and Lawrence A. Johnson '̂̂  

INTRODUCTION 

It was well known that zein cannot be dissolved in water, but can be 

dispersed in basic aqueous solutions. Wahl (1934) reported that 0.25% NaOH 

solution was the most suitable solvent for extracting zein from com gluten meal 

(CGM). Swallen (1941) found that a pH of at least 11.5 with a total alkali content of 

about 1.2% NaOH (based on the weight of zein) is required to extract zein. A zein 

dispersion (10% w/v concentration) was made by dissolving zein in a pH range of 

11.3 to 12.7 with 1.4-6.4% NaOH (based on the weight of zein) (Ofelt and Evans 

1949). Any pH range that deviated from the 11.3-12.7 rapidly reduced the solubility 

of zein in aqueous solution. Zein has also been extracted with a solvent containing 

a low level of organic solvent (about 30% (w/w) of isopropyl alcohol) and 6 M 
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Ca(0H)2 (Morris et al. 1956,1959). The extraction efficiency increased when the 

solvent was heated to temperatures ranging from 70 °C to the boiling point of 

isopropyi alcohol. 

CGM, a valuable co-product of the wet-milling process, contains 60-70% 

protein, and zeins comprise about 65% of the total proteins (db) (Watson and Yahl, 

1967). The current commercial method for zein production from CGM was 

developed by Carter and Reck (1970). A single extraction is camed out at 55-65 °C 

with 88% (w/w) isopropyi alcohol containing 0.25% NaOH. The zein alcohol extract 

is chilled at -10 to -20 °C to precipitate zein from the solvent. The process is simple, 

and protein quality is considered good because the process does not require the 

removal of solvent by distillation. Another advantage is that a second solvent is not 

required to remove the oil and pigments. The operating costs of a complex solvent 

mixture recovery system can be decreased, and the operation is reported to 

minimize explosion hazards. However, variable yields and protein qualities of 

extracted zeins are problems. 

The SO2 present in the steeps of the wet milling process cleaves the 

intermolecular disulfide bond and releases starch granules from the protein matrix 

(Blanchard 1992). In addition, the SO2 also increases protein solubility in alcohol 

aqueous (Neumann et al. 1984), decreases the pH of solution, and functions as an 

anti-microbial agent. Therefore, the CGM obtained from the wet milling process is 

not neutral but acidic. The pH value of the CGM is dependent upon the SO2 
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concentration during steeping, and the concentration of lactic acid produced. To 

maintain the extraction solution for zein in the optimum pH range of 11.3-12.7, a 

buffer solution was used. The phosphate buffer is one of the very few buffer 

solutions which can buffer the solution in the pH range of 12-13, and, furthermore, is 

an odorless food-grade reagent. Therefore, phosphate was selected to buffer the 

pH of the extraction solution in an attempt to increase the zein extraction yield. 

MATERIALS AND METHODS 

Com Gluten Meal Samples 

CGM samples (12) were obtained from six different wet-milling plants in Iowa 

and Illinois. The samples were collected and processed in December 1993 and 

March 1994. 

Extraction of Zein 

The extraction procedure used was that described by Wu et al. (1995a). The 

extraction process was replicated three times for each sample and each of the 

following zein extraction conditions; 

a. CGM with 88% (w/w) isopropyl alcohol and 12% water adjusted with NaOH to pH 

11.5,12.0,12.5,13.0, and 13.5. The extraction was carried out at 60 °C w'rth a ratio 

of 1:4 CGMisolvent (w/w). 
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b. CGM with 88% (wAv) isopropyl alcohol and 12% phosphate buffer solution. The 

concentrations of phosphate in the bufFerwere 0, 0.001, 0.005, and 0.01 M. The pH 

of the aqueous buffer was adjusted to 12.5 with 6M NaOH. Extraction was carried 

out at 60 °C at a ratio of 1:4 CGM:solvent (w/w). 

c. CGM with 88% (w/w) isopropyl alcohol plus 12% 0.005M phosphate buffer (pH 

12.5) at 50, 60, 70, and 80 °C. Extraction was carried out at a ratio of 1 ;4 

CGMisolvent (w/w). 

d. the ratios of 1:4,1:6, and 1:8 (w/w) of CGM to the isopropyl alcohol-phosphate 

buffer (0.005M phosphate and pH12.5) were used to compare zein extraction 

efficiency. Extraction was carried out at 60 °C. 

The extraction yield was calculated as the weight percentage of extracted 

zein from the total weight the CGM (db). Protein purity was the protein content of 

the extracted zein. Protein content was detemnined by using the 6.25 x total N 

content determined by Kjeldahl (Tecator, Sweden) analysis (CRA1986, Method A-

18). Protein recovery was calculated as the percentage of the protein in the 

extracted zein to the protein content of the CGM (db). 

pH Determination 

The pH value of CGM sluny was detemnined using the method of Wu et al. 

(1995b). 



www.manaraa.com

124 

RESULTS AND DISCUSSION 

Influence of CGM Slurry pH on Zein Recovery 

The pHs of the twelve CGM slurries ranged from 3.7 to 4.4. Protein recovery 

was not linear, but polynomial, as the pH of CGM slurry increased (Fig. 1). The pH 

differences of the CGM slunies could be attributed to differences in wet milling and 

CGM production methods, such as steeping temperature and time, concentrations 

of SO2 and lactic acid, and drying conditions. The protein conformation in CGM was 

probably changed by cleaving the disulfide bond with SO2, oxidation with air to 

reform disulfide bond during heat, deamidation of glutamine, and aggregation by 

hydrophobic bond. The difference of the CGM slurry pH indirectly indicated the 

change of protein conformation. The CGM slum'es with pH's lower than 3.9 and 

higher than 4.3 gave lower zein extraction yield and protein recovery. 

influence of Extraction Solvent pH on Zein Extraction 

The CGMs with the highest sluny pH (4.36) and the lowest sluny pH (3.77) 

were selected to study the influence of pH on zein extraction. The original protein 

and total a-zein contents in the two CGM samples were not big different (Table I). 

The optimum pH for zein extraction changed for the different CGM used. For CGM 

D, the yield and purity of zein extracted increased as the solvent pH increased fi'om 

11.5 to 12.5, and decreased as the solvent pH increased from 12.5 to 13.5 (Table 

II). However, for CGM I, the highest yield and protein recovery were obtained at the 
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extraction solvent pH of 13.0 instead of pH 12.5. The reason for this may be its low 

initial CGM slurry pH. Low CGM slurry pH required more base to neutralize acid 

and make the pH of extraction solution to 11.3-12.7 which is the optimum pH range 

for zein solubilization. 

Effect of Phosphate Buffer 

Low concentrations of phosphate markedly increased zein extraction yield. 

Since the solubility of the phosphate in isopropyl alcohol is relatively low, 

concentrations lower than 0.01 M of phosphate are suggested. The functions of the 

phosphate were to: 1) buffer the extraction solution pH to approximately 12.5; 2) 

^cilitate separating extracted zeins from the solvent during chilling; and 3) 

accelerate deamidation of proteins during extraction and increase zein solubility 

(Shih 1990). The yields and protein recoveries of extracted zein in both CGM 

samples increased when 0.001 M phosphate was added. The yield in CGM D 

sample increased 1.1 and 5.6% in CGM I compared to values obtained in the 

absence of 0.001 M phosphate in the extraction solvent (pH 12.5) (Table II), and the 

protein recovery increased 1.2 and 7.1% for CGM D and I, respectively. The buffer 

efficiency was more significant in CGM I because of its low initial CGM slurry pH. As 

the phosphate concentration increased to 0.005 M, the extraction yield and protein 

recovery reached maxima, and then decreased when the concentration of 



www.manaraa.com

126 

phosphate was 0.01 M. Protein purity decreased as phosphate concentration 

increased. 

The temperature data showed that when 0.005 M phosphate was added to 

the extraction solvent, extraction at 70 °C gave the highest yield (21%). When the 

temperature increased from 60 to 80 °C, the purity of extracted zein increased from 

86.3 to 87.8%. 

The extraction yield increased from 17.1 to 18.1% when the ratio of CGM to 

the solvent was changed from 1 ;4 to 1:6, and the yields were not different when the 

ratio of CGM to the solvent was changed from 1:6 to 1:8. The protein purities were 

86.3, 86.7 and 87.7% for the 1:4,1:6 and 1:8 ratios, respectively. 

Based on the previous results, the optimum conditions of 88% isopropyl 

alcohol with 0.005M phosphate buffer (pH12.5), 1:6 CGM/solvent ratio, and 70 °C 

were used to extract zein from CGM D and I. For CGM D, the extraction yield was 

21.0%, protein purity was 87.3%, and protein recovery was 27.7%. The ratio of total 

a-zein recovery (the extraction yield to the total a-zein content in Table I) was 59.3% 

compared to 42.9% without phosphate in the extraction solvent. For CGM I, the 

extraction yield was 20.1%, protein purity was 89.0%, and protein recovery was 

27.3%. The ratio of total a-zein recovery was 56.0%, compared to 29.0% without 

phosphate. 

Small amounts phosphate added to the extraction solvent can markedly 

increase zein extraction yield (38-52%). The phosphate functions as a buffer and 
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salting-out reagent, and may be a catalyst for protein deamidation. For both the 
I 

high and low pH CGM samples, the solvent with a small amount phosphate added 

improve protein recovery. There were no significant differences in HPLC a-zein 

distribution, and lEF polyacrylamide gel from zein extracted with or without 

phosphate. Whether the zein extracted with phosphate has any difference in the 

functionality will need to be investigated. 
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Flg.1. Protein recovery as affected by pH of the CGM slurry. 
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Table I 

Moisture, pH, and Protein Contents of Com Gluten Meals 
from Different Wet Mills® 

Moisture pH Protein Total 
CGM (%) (% db) a-zeins (% db) 

D 6.67 a 4.36 a 66.3 a 35.4 a 

1 7.51 b 3.77 b 65.5 b 35.9 a 

® Means followed by different letters within the same column are 
significantly different (p<0.05). 
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Table II 

Effects of pH & Phosphate on Protein Yield, Purity and Recovery of Zein Extraction® 

CGMD CGMI 
pH Conc.of 

Phosphate 
(M) 

Yield 
(%) 

Protein 
Purity 
(%) 

Protein 
Recovery 

(%) 

Yield 
(%) 

Protein 
Purity 
(%) 

Protein 
Recovery 

(%) 
11.5 0 10.4 d 87.7 abc 13.5 d 7.7 d 87.1 abc 10.2 d 

12.0 0 13.1 c 88.8 a 17.5 c 10.5 c 87.5 abc 14.0 c 

12.5 0 15.2 abc 88.7 a 20.4 abc 10.4 c 88.4 a 14.1 c 

13.0 0 14.3 be 87.9 ab 18.9 be 13.2 b 88.2 ab 17.8 b 

13.5 0 5.9 e 86.5 be 7.7 e 7.9 cd 86.8 be 10.5 d 

12.5 0.001 16.3 ab 88.2 ab 21.6 ab 16.0 a 87.2 abc 21.2 ab 

12.5 0.005 17.1 a 86.3 be 22.3 a 16.6 a 86.5 c 21.9 a 

12.5 0.01 14.5 be 85.7 c 18.7 be 14.5 ab 86.4 c 19.2 ab 

® Means followed by different letters within the same column are significantly different (p<0.05). 
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7. GENERAL CONCLUSIONS 

The investigation of Actors that influence the yield and purity of zein 

extracted from commercial CGM samples revealed that protein recovery ranged 

from 21.3 to 32.0% and protein purity from 82.1 to 87.6%. Protein recovery 

increased as purity increased with a congelation coefficient 0.76 (p<0.01). One of 

the major frictors influencing extraction yield was protein content, especially a-zein 

content which ranged from 53.4 to 64% of the total protein in the CGM samples. 

The intensity of red color of the CGM was negatively con-elated with protein 

recovery and zein purity, with correlation coefficients of r = -0.66 and -0.72, 

respectively, at the 0.02 significant level. 

The production of CGM from the wet-milling pilot-plant facility showed that 

high protein-containing gluten can be produced successfully; however, to obtain 

protein contents closer to commercial levels, gluten yield had to be sacrificed. The 

higher protein hybrid produced gluten in higher yield and with high protein content. 

CGM drying temperature and method were major factors in detenning yield 

and purity of zein extracted from the meal. Color differences in CGM were due to 

the method of drying, temperature, and the maize hybrid milled. Low temperature 

oven-dried CGM produced lighter colored CGM as did freeze and spray drying 

compared to CGM dried at higher temperatures. Zein extraction yield, protein 

recovery and protein purity were also higher in the CGM obtained from maize 

containing higher protein content. The yield and protein recovery of zein decreased 
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as the drying temperature increased. Protein aggregation at high temperature is 

believed to be the primary reason for the lower yields. Zein yield, protein recovery, 

and protein purity were also significantly lower fi-om CGMs obtained from freeze-

and spray-drying compared to oven-dried CGM. A relatively high pH value of the 

CGM slurries, more less polarity a-zeins, and more a-zeins with a pi 7.3 were the 

characteristics of the freeze- and spray-dried CGM. Possible changes in protein 

during drying are deamidation, oxidation of sulfhydral groups on protein, and some 

hydrophobic bond formation which could interfere with zein extraction yield. 

Small amounts of phosphate added into the extraction solvent can maricedly 

increase zein extraction yield (38-50%). For both high and low slurry pH CGMs, 

protein recovery values were increased when small amounts phosphate were added 

to the solvent. The zein extracted with phosphate showed no significant difference 

in a-zein distribution on the HPLC (high performance liquid chromatography) 

chromatogram and lEF (isoelectric focusing) gel. 
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APPENDIX. ANALYSIS OF VARIANCE TABLES 

I. ANOVA Tables for the Sample Means of Zein Extracted from Cmmercial CGM. 

Yield % 
Source d.f. SS MS F P>F % of Error 

Contribution 
CGM 
Rep 

11 
48 

453.9 
105.5 

43.27 
2.189 

18.776 <0.0001 78 
22 

Total 59 559.4 

Protein Purity % 
Source d.f. SS MS F P>F % of Enror 

Contribution 
CGM 
Rep 

11 
48 

150.8 
47.4 

13.71 
0.987 

13.887 <0.0001 72 
28 

Total 59 198.1 
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II. ANOVA Tables for the Randomized Block Design in the Influence of Maize 
Hybrids and Heat Treatments on Zein Extraction Experiments. 

Yield % 
Source d.f. MS F P>F (orPr>|T|) 
Milling 2 3.7 9.8 0.0013 
Hybrid 1 76.9 205.22 0.0001 
Treatment 4 41.2 110.03 0.0001 

F.S. vs Oven 1 0.0001 
F. vs S. 1 0.1653 

Hybrid » Trt 4 8.9 23.79 0.0001 
Error 18 0.4 
Total 29 

Protein Purity % 
Source d.f. MS F P>F (orPr>|T|) 
Milling 2 6 0.74 0.4917 
Hybrid 1 847 108.43 0.0001 

Treatment 4 46 5.92 0.0032 
F.S. vs Oven 1 0.0019 
F. vs S. 1 0.8813 

Hybrid » Trt 4 20 2.65 0.0670 
Error 18 8 
Total 29 

Protein Recovery % 
Source d.f. MS F P>F (orPr>lT|) 
Milling 2 4.4 3.90 0.0391 
Hybrid 1 172.5 154.18 0.0001 
Treatment 4 110.5 98.79 0.0001 

F.S. vs Oven 1 0.0001 
F. vs S. 1 0.1394 

Hybrid •Trt 4 34.2 30.54 0.0001 
Enror 18 1.1 
Total 29 
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